
A free, open-source alternative to Mathematica

The Mathics Team

July 31, 2021

Contents

I. Manual 4

1. Introduction 5

2. Language Tutorials 7

3. Examples 20

4. Django-based Web Interface 23

II. Reference of Built-in Symbols 26

1. Date and Time 27

2. Input and Output 32

3. Procedural Programming 41

4. Global System Information 46

5. SparseArray Functions 50

6. Solving Recurrence Equations 51

7. Rules and Patterns 52

8. Mathematical Functions 59

9. Functional Programming 67

10. Code Compilation 69

11. Options and Default Arguments 71

12. Attributes of Definitions 74

13. Tensors 79

14. Structural Operations 83

15. Drawing Graphics 90

16. Strings and Characters - Miscellaneous 102

17. Mathematical Optimization 106

18. Drawing Options and Option Values 107

19. Physical and Chemical data 112

2

20. List Functions - Miscellaneous 114

21. Numeric Evaluation and Precision 124

22. Arithmetic Functions 130

23. Colors 134

24. Distance and Similarity Measures 151

25. Graphics, Drawing, and Images 153

26. Input/Output, Files, and Filesystem 174

27. Integer Functions 195

28. List Functions 201

29. Statistics, Moments, and Generating Functions 215

30. Integer and Number-Theoretical Functions 217

31. Special Functions 252

32. Strings and Characters 262

33. File Formats 271

III. License 273

A. GNU General Public License 274

B. Included software and data 407

Index 410

3

Part I.

Manual

4

1. Introduction

Mathics—to be pronounced like “Mathematics”
without the “emat”—is a general-purpose com-
puter algebra system (CAS). It is meant to be a
free, open-source alternative to Mathematica®. It
is free both as in “free beer” and as in “free-
dom”. Mathics can be run Mathics locally, and
to facilitate installation of the vast amount of
software need to run this, there is a docker im-
age available. See https://hub.docker.com/r/
mathicsorg/mathics.
The programming language of Mathics is meant
to resemble Wolfram’s famous Mathematica® as
much as possible. However, Mathics is in no way

affiliated or supported by Wolfram. Mathics will
probably never have the power to compete with
Mathematica® in industrial applications; yet, it is
an alternative for educational purposes. It also
invites community development at all levels.
See https://mathics-development-guide.
readthedocs.io/en/latest/installing/
index.html for the most recent instructions for
installing from PyPI, source, or from docker.
For implementation details see https://
mathics-development-guide.readthedocs.
io/en/latest/.

Contents

Why yet another CAS,
one based on
Mathematica? . . 5

What does Mathics
offer? 6

What is missing? . . . 6

Who is behind it? . . . 6

Why yet another CAS, one
based on Mathematica?
Mathematica® is great, but it a couple of disad-
vantages.

• It is not open source.
• Its development is tightly controled and

centralized.
The last point some may find and advantage.
Even if you are willing to pay hundreds of dol-
lars for the software, would will not be able to
see what’s going on “inside” the program if that
is your interest. That’s what free, open-source,
and community-supported software is for!
Mathics aims at combining the best of both
worlds: the beauty of Mathematica® backed by
a free, extensible Python core which includes a
rich set of Python tools including:

• mpmath https://mpmath.org/ for
floating-point arithmetic with arbitrary
precision,

• numpy https://numpy.org/numpy for nu-
meric computation,

• sympy https://sympy.org for symbolic
mathematics, and

• optionally scipy https://www.scipy.
org/ for Scientific calculations.

Performance of Mathics is not, right now, practi-
cal in large-scale projects and calculations. How-
ever can be used as a tool for quick explorations
and to educate people who might later switch to
Mathematica®.

What does Mathics offer?
Some of the features of Mathics are:

• a powerful functional programming lan-
guage,

• a system driven by pattern matching and
rules application,

• rationals, complex numbers, and
arbitrary-precision arithmetic,

• lots of list and structure manipulation rou-
tines,

• an interactive graphical user interface
right in the Web browser using MathML

5

https://hub.docker.com/r/mathicsorg/mathics
https://hub.docker.com/r/mathicsorg/mathics
https://mathics-development-guide.readthedocs.io/en/latest/installing/index.html
https://mathics-development-guide.readthedocs.io/en/latest/installing/index.html
https://mathics-development-guide.readthedocs.io/en/latest/installing/index.html
https://mathics-development-guide.readthedocs.io/en/latest/
https://mathics-development-guide.readthedocs.io/en/latest/
https://mathics-development-guide.readthedocs.io/en/latest/
https://mpmath.org/
https://numpy.org/numpy
https://sympy.org
https://www.scipy.org/
https://www.scipy.org/

(apart from a command line interface),
• creation of graphics (e.g. plots) and dis-

play in the browser using SVG for 2D
graphics and three.js for 3D graphics,

• export of results to LATEX (using Asymptote
for graphics),

• an easy way of defining new functions in
Python and which hooks into Python li-
braries

• an integrated documentation and testing
system.

What is missing?
There are lots of ways in which Mathics could
still be improved.
Most notably, performance is still slow. Al-
though there are various ways to speed up
Python, some serious work is need in Mathics, to
speed it up. This will be addressed in the future.
Apart from performance issues, Mathics has

about about half of the features and libraries of
Mathematica®.
Graphics has always been lagging and in the fu-
ture we intend to decouple Graphics better so
that the rich set of graphics packages that are out
there can be more easily used.

Who is behind it?
Mathics was created by Jan Pöschk in 2011.
From 2013 to about 2017 it had been main-
tained mostly by Angus Griffith and Ben Jones.
Since then, a number of others have been peo-
ple involved in Mathics; the list can be found
in the AUTHORS.txt file, https://github.com/
mathics/Mathics/blob/master/AUTHORS.txt.
If you have any ideas on how to improve Mathics
or even want to help out yourself, please contact
us!

Welcome to Mathics, have fun!

6

https://github.com/mathics/Mathics/blob/master/AUTHORS.txt
https://github.com/mathics/Mathics/blob/master/AUTHORS.txt

2. Language Tutorials

The following sections are introductions to the
basic principles of the language of Mathics. A
few examples and functions are presented. Only
their most common usages are listed; for a full
description of a Symbols possible arguments,
options, etc., see its entry in the Reference of

Built-in Symbols.
However if you google for “Mathematica Tuto-
rials” you will find easily dozens of other tutori-
als which are applicable. Be warned though that
Mathics does not yet offer the full range and fea-
tures and capabilities of Mathematica®.

Contents

Basic calculations . . . 8
Symbols and

Assignments . . . 9
Comparisons and

Boolean Logic . . 9
Strings 9

Working with Lists . . 10
The Structure of

Mathics Objects . 11
Functions and Patterns 13
Program-Flow Control

Statements 13
Scoping 14

Formatting Output . . 16
Graphics Introduction

Examples 18
3D Graphics 18
Plotting Introduction

Examples 19

Basic calculations
Mathics can be used to calculate basic stuff:
>> 1 + 2

3

To submit a command to Mathics, press Shift
+Return in the Web interface or Return in the
console interface. The result will be printed in a
new line below your query.
Mathics understands all basic arithmetic opera-
tors and applies the usual operator precedence.
Use parentheses when needed:
>> 1 - 2 * (3 + 5)/ 4

−3

The multiplication can be omitted:
>> 1 - 2 (3 + 5)/ 4

−3

>> 2 4
8

Powers can be entered using ^:
>> 3 ^ 4

81

Integer divisions yield rational numbers:

>> 6 / 4
3
2

To convert the result to a floating point number,
apply the function N:
>> N[6 / 4]

1.5

As you can see, functions are applied using
square braces [and], in contrast to the com-
mon notation of (and). At first hand, this
might seem strange, but this distinction between
function application and precedence change is
necessary to allow some general syntax struc-
tures, as you will see later.
Mathics provides many common mathematical
functions and constants, e.g.:
>> Log[E]

1

>> Sin[Pi]
0

>> Cos[0.5]
0.877583

When entering floating point numbers in your
query, Mathics will perform a numerical evalua-

7

tion and present a numerical result, pretty much
like if you had applied N.
Of course, Mathics has complex numbers:
>> Sqrt[-4]

2I

>> I ^ 2
−1

>> (3 + 2 I)^ 4
−119 + 120I

>> (3 + 2 I)^ (2.5 - I)
43.663 + 8.28556I

>> Tan[I + 0.5]
0.195577 + 0.842966I

Abs calculates absolute values:
>> Abs[-3]

3

>> Abs[3 + 4 I]
5

Mathics can operate with pretty huge numbers:
>> 100!

93 326 215 443 944 152 681 699 ˜
˜238 856 266 700 490 715 968 ˜
˜264 381 621 468 592 963 895 ˜
˜217 599 993 229 915 608 941 ˜
˜463 976 156 518 286 253 697 920 ˜
˜827 223 758 251 185 210 916 864 ˜
˜000 000 000 000 000 000 000 000

(! denotes the factorial function.) The precision
of numerical evaluation can be set:
>> N[Pi, 100]

3.141592653589793238462643˜
˜383279502884197169399375˜
˜105820974944592307816406˜
˜286208998628034825342117068

Division by zero is forbidden:
>> 1 / 0

In f initeexpression1/0encountered.

ComplexInfinity

Other expressions involving Infinity are eval-
uated:
>> Infinity + 2 Infinity

∞

In contrast to combinatorial belief, 0^0 is unde-
fined:

>> 0 ^ 0

Indeterminateexpression00encountered.

Indeterminate

The result of the previous query to Mathics can
be accessed by %:
>> 3 + 4

7

>> % ^ 2
49

Symbols and Assignments
Symbols need not be declared in Mathics, they
can just be entered and remain variable:
>> x

x

Basic simplifications are performed:
>> x + 2 x

3x

Symbols can have any name that consists of
characters and digits:
>> iAm1Symbol ^ 2

iAm1Symbol2

You can assign values to symbols:
>> a = 2

2

>> a ^ 3
8

>> a = 4
4

>> a ^ 3
64

Assigning a value returns that value. If you
want to suppress the output of any result, add
a ; to the end of your query:
>> a = 4;

Values can be copied from one variable to an-
other:
>> b = a;

Now changing a does not affect b:
>> a = 3;

>> b
4

8

Such a dependency can be achieved by us-
ing “delayed assignment” with the := operator
(which does not return anything, as the right
side is not even evaluated):
>> b := a ^ 2

>> b
9

>> a = 5;

>> b
25

Comparisons and Boolean Logic
Values can be compared for equality using the
operator ==:
>> 3 == 3

True

>> 3 == 4
False

The special symbols True and False are used
to denote truth values. Naturally, there are in-
equality comparisons as well:
>> 3 > 4

False

Inequalities can be chained:
>> 3 < 4 >= 2 != 1

True

Truth values can be negated using ! (logical not)
and combined using && (logical and) and || (log-
ical or):
>> !True

False

>> !False
True

>> 3 < 4 && 6 > 5
True

&& has higher precedence than ||, i.e. it binds
stronger:
>> True && True || False && False

True

>> True && (True || False)&& False
False

Strings
Strings can be entered with " as delimiters:
>> "Hello world!"

Hello world!

As you can see, quotation marks are not printed
in the output by default. This can be changed by
using InputForm:
>> InputForm["Hello world!"]

"Hello world!"

Strings can be joined using <>:
>> "Hello" <> " " <> "world!"

Hello world!

Numbers cannot be joined to strings:
>> "Debian" <> 6

Stringexpected.

Debian<>6

They have to be converted to strings using
ToString first:
>> "Debian" <> ToString[6]

Debian6

Working with Lists
Lists can be entered in Mathics with curly braces
{ and }:
>> mylist = {a, b, c, d}

{a, b, c, d}

There are various functions for constructing
lists:
>> Range[5]

{1, 2, 3, 4, 5}

>> Array[f, 4]

{ f [1] , f [2] , f [3] , f [4]}

>> ConstantArray[x, 4]

{x, x, x, x}

>> Table[n ^ 2, {n, 2, 5}]
{4, 9, 16, 25}

The number of elements of a list can be deter-
mined with Length:
>> Length[mylist]

4

Elements can be extracted using double square

9

braces:
>> mylist[[3]]

c

Negative indices count from the end:
>> mylist[[-3]]

b

Lists can be nested:
>> mymatrix = {{1, 2}, {3, 4}, {5,

6}};

There are alternate forms to display lists:
>> TableForm[mymatrix]

1 2
3 4
5 6

>> MatrixForm[mymatrix] 1 2
3 4
5 6

There are various ways of extracting elements
from a list:
>> mymatrix[[2, 1]]

3

>> mymatrix[[;;, 2]]

{2, 4, 6}

>> Take[mylist, 3]

{a, b, c}

>> Take[mylist, -2]

{c, d}

>> Drop[mylist, 2]

{c, d}

>> First[mymatrix]

{1, 2}

>> Last[mylist]

d

>> Most[mylist]

{a, b, c}

>> Rest[mylist]

{b, c, d}

Lists can be used to assign values to multiple
variables at once:

>> {a, b} = {1, 2};

>> a
1

>> b
2

Many operations, like addition and multiplica-
tion, “thread” over lists, i.e. lists are combined
element-wise:
>> {1, 2, 3} + {4, 5, 6}

{5, 7, 9}

>> {1, 2, 3} * {4, 5, 6}
{4, 10, 18}

It is an error to combine lists with unequal
lengths:
>> {1, 2} + {4, 5, 6}

Objectso f unequallengthcannotbecombined.

{1, 2} + {4, 5, 6}

The Structure of Mathics
Objects
Every expression in Mathics is built upon the
same principle: it consists of a head and an arbi-
trary number of children, unless it is an atom, i.e.
it can not be subdivided any further. To put it
another way: everything is a function call. This
can be best seen when displaying expressions in
their “full form”:
>> FullForm[a + b + c]

Plus [a, b, c]

Nested calculations are nested function calls:
>> FullForm[a + b * (c + d)]

Plus [a, Times [b, Plus [c, d]]]

Even lists are function calls of the function List:
>> FullForm[{1, 2, 3}]

List [1, 2, 3]

The head of an expression can be determined
with Head:
>> Head[a + b + c]

Plus

The children of an expression can be accessed
like list elements:
>> (a + b + c)[[2]]

b

10

The head is the 0th element:
>> (a + b + c)[[0]]

Plus

The head of an expression can be exchanged us-
ing the function Apply:
>> Apply[g, f[x, y]]

g
[
x, y

]
>> Apply[Plus, a * b * c]

a + b + c

Apply can be written using the operator @@:
>> Times @@ {1, 2, 3, 4}

24

(This exchanges the head List of {1, 2, 3, 4}
with Times, and then the expression Times[1,
2, 3, 4] is evaluated, yielding 24.) Apply can
also be applied on a certain level of an expres-
sion:
>> Apply[f, {{1, 2}, {3, 4}}, {1}]

{ f [1, 2] , f [3, 4]}

Or even on a range of levels:
>> Apply[f, {{1, 2}, {3, 4}}, {0,

2}]

f
[

f [1, 2] , f [3, 4]
]

Apply is similar to Map (/@):
>> Map[f, {1, 2, 3, 4}]

{ f [1] , f [2] , f [3] , f [4]}

>> f /@ {{1, 2}, {3, 4}}{
f
[
{1, 2}

]
, f

[
{3, 4}

]}
The atoms of Mathics are numbers, symbols, and
strings. AtomQ tests whether an expression is an
atom:
>> AtomQ[5]

True

>> AtomQ[a + b]
False

The full form of rational and complex numbers
looks like they were compound expressions:
>> FullForm[3 / 5]

Rational [3, 5]

>> FullForm[3 + 4 I]
Complex [3, 4]

However, they are still atoms, thus unaffected

by applying functions, for instance:
>> f @@ Complex[3, 4]

3 + 4I

Nevertheless, every atom has a head:
>> Head /@ {1, 1/2, 2.0, I, "a

string", x}

{Integer, Rational, Real,
Complex, String, Symbol}

The operator === tests whether two expressions
are the same on a structural level:
>> 3 === 3

True

>> 3 == 3.0
True

But:
>> 3 === 3.0

False

because 3 (an Integer) and 3.0 (a Real) are
structurally different.

Functions and Patterns
Functions can be defined in the following way:
>> f[x_] := x ^ 2

This tells Mathics to replace every occurrence of
f with one (arbitrary) parameter x with x ^ 2.
>> f[3]

9

>> f[a]

a2

The definition of f does not specify anything for
two parameters, so any such call will stay un-
evaluated:
>> f[1, 2]

f [1, 2]

In fact, functions in Mathics are just one aspect of
patterns: f[x_] is a pattern that matches expres-
sions like f[3] and f[a]. The following patterns
are available:

11

_ or Blank[]
matches one expression.

Pattern[x, p]
matches the pattern p and stores the value
in x.

x_ or Pattern[x, Blank[]]
matches one expression and stores it in x.

__ or BlankSequence[]
matches a sequence of one or more ex-
pressions.

___ or BlankNullSequence[]
matches a sequence of zero or more ex-
pressions.

_h or Blank[h]
matches one expression with head h.

x_h or Pattern[x, Blank[h]]
matches one expression with head h and
stores it in x.

p | q or Alternatives[p, q]
matches either pattern p or q.

p ? t or PatternTest[p, t]
matches p if the test t[p] yields True.

p /; c or Condition[p, c]
matches p if condition c holds.

Verbatim[p]
matches an expression that equals p,
without regarding patterns inside p.

As before, patterns can be used to define func-
tions:
>> g[s___] := Plus[s] ^ 2

>> g[1, 2, 3]
36

MatchQ[e, p] tests whether e matches p:
>> MatchQ[a + b, x_ + y_]

True

>> MatchQ[6, _Integer]
True

ReplaceAll (/.) replaces all occurrences of a
pattern in an expression using a Rule given by
->:
>> {2, "a", 3, 2.5, "b", c} /.

x_Integer -> x ^ 2

{4, a, 9, 2.5, b, c}

You can also specify a list of rules:
>> {2, "a", 3, 2.5, "b", c} /. {

x_Integer -> x ^ 2.0, y_String
-> 10}

{4., 10, 9., 2.5, 10, c}

ReplaceRepeated (//.) applies a set of rules re-
peatedly, until the expression doesn’t change
anymore:
>> {2, "a", 3, 2.5, "b", c} //. {

x_Integer -> x ^ 2.0, y_String
-> 10}

{4., 100., 9., 2.5, 100., c}

There is a “delayed” version of Rule which can
be specified by :> (similar to the relation of := to
=):
>> a :> 1 + 2

a:>1 + 2

>> a -> 1 + 2
a− > 3

This is useful when the right side of a rule
should not be evaluated immediately (before
matching):
>> {1, 2} /. x_Integer -> N[x]

{1, 2}

Here, N is applied to x before the actual match-
ing, simply yielding x. With a delayed rule this
can be avoided:
>> {1, 2} /. x_Integer :> N[x]

{1., 2.}

While ReplaceAll and ReplaceRepeated sim-
ply take the first possible match into ac-
count, ReplaceList returns a list of all possi-
ble matches. This can be used to get all subse-
quences of a list, for instance:
>> ReplaceList[{a, b, c}, {___, x__

, ___} -> {x}]

{{a} , {a, b} , {a, b,
c} , {b} , {b, c} , {c}}

ReplaceAll would just return the first expres-
sion:
>> ReplaceAll[{a, b, c}, {___, x__,

___} -> {x}]

{a}

In addition to defining functions as rules for cer-
tain patterns, there are pure functions that can be
defined using the & postfix operator, where ev-
erything before it is treated as the function body
and # can be used as argument placeholder:
>> h = # ^ 2 &;

>> h[3]
9

12

Multiple arguments can simply be indexed:
>> sum = #1 + #2 &;

>> sum[4, 6]
10

It is also possible to name arguments using
Function:
>> prod = Function[{x, y}, x * y];

>> prod[4, 6]
24

Pure functions are very handy when functions
are used only locally, e.g., when combined with
operators like Map:
>> # ^ 2 & /@ Range[5]

{1, 4, 9, 16, 25}

Sort according to the second part of a list:
>> Sort[{{x, 10}, {y, 2}, {z, 5}},

#1[[2]] < #2[[2]] &]

{{y, 2} , {z, 5} , {x, 10}}

Functions can be applied using prefix or postfix
notation, in addition to using []:
>> h @ 3

9

>> 3 // h
9

Program-Flow Control
Statements
Like most programming languages, Mathics has
common program-flow control statements for
conditions, loops, etc.:

If[cond, pos, neg]
returns pos if cond evaluates to True, and
neg if it evaluates to False.

Which[cond1, expr1, cond2, expr2, ...]
yields expr1 if cond1 evaluates to True,
expr2 if cond2 evaluates to True, etc.

Do[expr, {i, max}]
evaluates expr max times, substituting i in
expr with values from 1 to max.

For[start, test, incr, body]
evaluates start, and then iteratively body
and incr as long as test evaluates to True.

While[test, body]
evaluates body as long as test evaluates to
True.

Nest[f , expr, n]
returns an expression with f applied n
times to expr.

NestWhile[f , expr, test]
applies a function f repeatedly on an ex-
pression expr, until applying test on the
result no longer yields True.

FixedPoint[f , expr]
starting with expr, repeatedly applies f
until the result no longer changes.

>> If[2 < 3, a, b]
a

>> x = 3; Which[x < 2, a, x > 4, b,
x < 5, c]

c

Compound statements can be entered with ;.
The result of a compound expression is its last
part or Null if it ends with a ;.
>> 1; 2; 3

3

>> 1; 2; 3;

Inside For, While, and Do loops, Break[] exits
the loop and Continue[] continues to the next
iteration.
>> For[i = 1, i <= 5, i++, If[i ==

4, Break[]]; Print[i]]

1
2
3

13

Scoping
By default, all symbols are “global” in Mathics,
i.e. they can be read and written in any part
of your program. However, sometimes “local”
variables are needed in order not to disturb the
global namespace. Mathics provides two ways
to support this:

• lexical scoping by Module, and
• dynamic scoping by Block.

Module[{vars}, expr]
localizes variables by giving them a tem-
porary name of the form name$number,
where number is the current value of
$ModuleNumber. Each time a module
is evaluated, $ModuleNumber is incre-
mented.

Block[{vars}, expr]
temporarily stores the definitions of cer-
tain variables, evaluates expr with reset
values and restores the original defini-
tions afterwards.

Both scoping constructs shield inner variables
from affecting outer ones:
>> t = 3;

>> Module[{t}, t = 2]
2

>> Block[{t}, t = 2]
2

>> t
3

Module creates new variables:
>> y = x ^ 3;

>> Module[{x = 2}, x * y]

2x3

Block does not:
>> Block[{x = 2}, x * y]

16

Thus, Block can be used to temporarily assign a
value to a variable:
>> expr = x ^ 2 + x;

>> Block[{x = 3}, expr]
12

>> x
x

Block can also be used to temporarily change
the value of system parameters:
>> Block[{$RecursionLimit = 30}, x

= 2 x]

Recursiondeptho f 30exceeded.

$Aborted

>> f[x_] := f[x + 1]; Block[{
$IterationLimit = 30}, f[1]]

Iterationlimito f 30exceeded.

$Aborted

It is common to use scoping constructs for func-
tion definitions with local variables:
>> fac[n_] := Module[{k, p}, p = 1;

For[k = 1, k <= n, ++k, p *= k
]; p]

>> fac[10]
3 628 800

>> 10!
3 628 800

Formatting Output
The way results are formatted for output in
Mathics is rather sophisticated, as compatibility
to the way Mathematica® does things is one of
the design goals. It can be summed up in the
following procedure:

1. The result of the query is calculated.
2. The result is stored in Out (which % is a

shortcut for).
3. Any Format rules for the desired output

form are applied to the result. In the
console version of Mathics, the result is
formatted as OutputForm; MathMLForm for
the StandardForm is used in the interac-
tive Web version; and TeXForm for the
StandardForm is used to generate the LATEX
version of this documentation.

4. MakeBoxes is applied to the formatted
result, again given either OutputForm,
MathMLForm, or TeXForm depending on the
execution context of Mathics. This yields
a new expression consisting of “box con-
structs”.

5. The boxes are turned into an ordinary
string and displayed in the console, sent to
the browser, or written to the documenta-
tion LATEX file.

14

As a consequence, there are various ways to im-
plement your own formatting strategy for cus-
tom objects.
You can specify how a symbol shall be formatted
by assigning values to Format:
>> Format[x] = "y";

>> x
y

This will apply to MathMLForm, OutputForm,
StandardForm, TeXForm, and TraditionalForm.
>> x // InputForm

x

You can specify a specific form in the assignment
to Format:
>> Format[x, TeXForm] = "z";

>> x // TeXForm
\text{z}

Special formats might not be very relevant for
individual symbols, but rather for custom func-
tions (objects):
>> Format[r[args___]] = "<an r

object>";

>> r[1, 2, 3]
<an r object>

You can use several helper functions to format
expressions:

Infix[expr, op]
formats the arguments of expr with infix
operator op.

Prefix[expr, op]
formats the argument of expr with prefix
operator op.

Postfix[expr, op]
formats the argument of expr with postfix
operator op.

StringForm[form, arg1, arg2, ...]
formats arguments using a format string.

>> Format[r[args___]] = Infix[{args
}, "~"];

>> r[1, 2, 3]
1 ∼ 2 ∼ 3

>> StringForm["‘1‘ and ‘2‘", n, m]

n and m

There are several methods to display expres-
sions in 2-D:

Row[{...}]
displays expressions in a row.

Grid[{{...}}]
displays a matrix in two-dimensional
form.

Subscript[expr, i1, i2, ...]
displays expr with subscript indices i1, i2,
...

Superscript[expr, exp]
displays expr with superscript (exponent)
exp.

>> Grid[{{a, b}, {c, d}}]

a b
c d

>> Subscript[a, 1, 2] // TeXForm

a_{1,2}

If you want even more low-level control of
how expressions are displayed, you can override
MakeBoxes:
>> MakeBoxes[b, StandardForm] = "c

";

>> b
c

This will even apply to TeXForm, because
TeXForm implies StandardForm:
>> b // TeXForm

c

Except some other form is applied first:
>> b // OutputForm // TeXForm

b

MakeBoxes for another form:
>> MakeBoxes[b, TeXForm] = "d";

>> b // TeXForm
d

You can cause a much bigger mess by overrid-
ing MakeBoxes than by sticking to Format, e.g.
generate invalid XML:
>> MakeBoxes[c, MathMLForm] = "<not

closed";

>> c // MathMLForm
<not closed

However, this will not affect formatting of ex-

15

pressions involving c:
>> c + 1 // MathMLForm

<math display="block"><mrow>
<mn>1</mn> <mo>+</mo>
<mi>c</mi></mrow></math>

That’s because MathMLForm will, when not over-
ridden for a special case, call StandardForm first.
Format will produce escaped output:
>> Format[d, MathMLForm] = "<not

closed";

>> d // MathMLForm
<math display="block">
<mtext><not closed</mtext>
</math>

>> d + 1 // MathMLForm
<math display="block"><mrow>
<mn>1</mn> <mo>+</mo>
<mtext><not closed</mtext>
</mrow></math>

For instance, you can override MakeBoxes to for-
mat lists in a different way:
>> MakeBoxes[{items___},

StandardForm] := RowBox[{"[",
Sequence @@ Riffle[MakeBoxes /@
{items}, " "], "]"}]

>> {1, 2, 3}
[123]

However, this will not be accepted as input to
Mathics anymore:
>> [1 2 3]

>> Clear[MakeBoxes]

By the way, MakeBoxes is the only built-in sym-
bol that is not protected by default:
>> Attributes[MakeBoxes][

HoldAllComplete
]

MakeBoxes must return a valid box construct:
>> MakeBoxes[squared[args___],

StandardForm] := squared[args] ^
2

>> squared[1, 2]

Power[squared[1, 2],
2]isnotavalidboxstructure.

>> squared[1, 2] // TeXForm

Power[squared[1, 2],
2]isnotavalidboxstructure.

=
The desired effect can be achieved in the follow-
ing way:
>> MakeBoxes[squared[args___],

StandardForm] := SuperscriptBox[
RowBox[{MakeBoxes[squared], "[",
RowBox[Riffle[MakeBoxes[#]& /@

{args}, ","]], "]"}], 2]

>> squared[1, 2]

squared [1, 2]2

You can view the box structure of a formatted
expression using ToBoxes:
>> ToBoxes[m + n]

RowBox
[
{m, +, n}

]
The list elements in this RowBox are strings,
though string delimiters are not shown in the de-
fault output form:
>> InputForm[%]

RowBox
[
{"m", "+", "n"}

]

Graphics Introduction Examples
Two-dimensional graphics can be created us-
ing the function Graphics and a list of graphics
primitives. For three-dimensional graphics see
the following section. The following primitives
are available:

Circle[{x, y}, r]
draws a circle.

Disk[{x, y}, r]
draws a filled disk.

Rectangle[{x1, y1}, {x2, y2}]
draws a filled rectangle.

Polygon[{{x1, y1}, {x2, y2}, ...}]
draws a filled polygon.

Line[{{x1, y1}, {x2, y2}, ...}]
draws a line.

Text[text, {x, y}]
draws text in a graphics.

16

>> Graphics[{Circle[{0, 0}, 1]}]

>> Graphics[{Line[{{0, 0}, {0, 1},
{1, 1}, {1, -1}}], Rectangle[{0,
0}, {-1, -1}]}]

Colors can be added in the list of graphics primi-
tives to change the drawing color. The following
ways to specify colors are supported:

RGBColor[r, g, b]
specifies a color using red, green, and
blue.

CMYKColor[c, m, y, k]
specifies a color using cyan, magenta, yel-
low, and black.

Hue[h, s, b]
specifies a color using hue, saturation,
and brightness.

GrayLevel[l]
specifies a color using a gray level.

All components range from 0 to 1. Each color

function can be supplied with an additional ar-
gument specifying the desired opacity (“alpha”)
of the color. There are many predefined colors,

such as Black, White, Red, Green, Blue, etc.
>> Graphics[{Red, Disk[]}]

Table of hues:
>> Graphics[Table[{Hue[h, s], Disk

[{12h, 8s}]}, {h, 0, 1, 1/6}, {s
, 0, 1, 1/4}]]

Colors can be mixed and altered using the fol-
lowing functions:

Blend[{color1, color2}, ratio]
mixes color1 and color2 with ratio, where
a ratio of 0 returns color1 and a ratio of 1
returns color2.

Lighter[color]
makes color lighter (mixes it with White).

Darker[color]
makes color darker (mixes it with Black).

17

>> Graphics[{Lighter[Red], Disk[]}]

Graphics produces a GraphicsBox:
>> Head[ToBoxes[Graphics[{Circle

[]}]]]

GraphicsBox

3D Graphics
Three-dimensional graphics are created using
the function Graphics3D and a list of 3D prim-
itives. The following primitives are supported
so far:

Polygon[{{x1, y1, z1}, {x2, y2, z3},
...}]

draws a filled polygon.
Line[{{x1, y1, z1}, {x2, y2, z3}, ...}]

draws a line.
Point[{x1, y1, z1}]

draws a point.

>> Graphics3D[Polygon[{{0,0,0},
{0,1,1}, {1,0,0}}]]

Colors can also be added to three-dimensional
primitives.
>> Graphics3D[{Orange, Polygon

[{{0,0,0}, {1,1,1}, {1,0,0}}]},
Axes->True]

Graphics3D produces a Graphics3DBox:
>> Head[ToBoxes[Graphics3D[{Polygon

[]}]]]

Graphics3DBox

Plotting Introduction Examples
Mathics can plot functions:

18

>> Plot[Sin[x], {x, 0, 2 Pi}]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

You can also plot multiple functions at once:
>> Plot[{Sin[x], Cos[x], x ^ 2}, {x

, -1, 1}]

−1.0 −0.5 0.5 1.0

−0.5

0.5

1.0

Two-dimensional functions can be plotted using
DensityPlot:
>> DensityPlot[x ^ 2 + 1 / y, {x,

-1, 1}, {y, 1, 4}]

You can use a custom coloring function:
>> DensityPlot[x ^ 2 + 1 / y, {x,

-1, 1}, {y, 1, 4}, ColorFunction
-> (Blend[{Red, Green, Blue},

#]&)]

One problem with DensityPlot is that it’s still
very slow, basically due to function evaluation
being pretty slow in general—and DensityPlot
has to evaluate a lot of functions.
Three-dimensional plots are supported as well:
>> Plot3D[Exp[x] Cos[y], {x, -2,

1}, {y, -Pi, 2 Pi}]

19

3. Examples

Contents

Curve sketching 20
Linear algebra 21 Dice 22

Curve sketching
Let’s sketch the function
>> f[x_] := 4 x / (x ^ 2 + 3 x + 5)

The derivatives are:
>> {f’[x], f’’[x], f’’’[x]} //

Together{
−4

(
−5 + x2)(

5 + 3x + x2
)2 ,

8
(
−15 − 15x + x3)(
5 + 3x + x2

)3 ,

−24
(
−20 − 60x − 30x2 + x4)(

5 + 3x + x2
)4

}

To get the extreme values of f, compute the ze-
roes of the first derivatives:
>> extremes = Solve[f’[x] == 0, x]{{

x− > −
√

5
}

,
{

x− >
√

5
}}

And test the second derivative:
>> f’’[x] /. extremes // N

{1.65086, − 0.064079}

Thus, there is a local maximum at x = Sqrt[5]
and a local minimum at x = -Sqrt[5]. Com-

pute the inflection points numerically, chopping
imaginary parts close to 0:
>> inflections = Solve[f’’[x] == 0,

x] // N // Chop

{{x− > −1.0852} , {x− > −
3.21463} , {x− > 4.29983}}

Insert into the third derivative:
>> f’’’[x] /. inflections

{−3.67683, 0.694905, 0.00671894}

Being different from 0, all three points are actual
inflection points. f is not defined where its de-
nominator is 0:
>> Solve[Denominator[f[x]] == 0, x]{{

x− > −3
2
− I

2

√
11

}
,{

x− > −3
2

+
I
2

√
11

}}
These are non-real numbers, consequently f is
defined on all real numbers. The behaviour of f
at the boundaries of its definition:
>> Limit[f[x], x -> Infinity]

0

>> Limit[f[x], x -> -Infinity]
0

Finally, let’s plot f:
>> Plot[f[x], {x, -8, 6}]

−8 −6 −4 −2 2 4 6

−2.5
−2.0
−1.5
−1.0
−0.5

0.5

Linear algebra
Let’s consider the matrix
>> A = {{1, 1, 0}, {1, 0, 1}, {0,

1, 1}};

20

>> MatrixForm[A] 1 1 0
1 0 1
0 1 1

We can compute its eigenvalues and eigenvec-
tors:
>> Eigenvalues[A]

{2, − 1, 1}

>> Eigenvectors[A]

{{1, 1, 1} , {1, − 2, 1} , {−1, 0, 1}}

This yields the diagonalization of A:
>> T = Transpose[Eigenvectors[A]];

MatrixForm[T] 1 1 −1
1 −2 0
1 1 1

>> Inverse[T] . A . T // MatrixForm 2 0 0

0 −1 0
0 0 1

>> % == DiagonalMatrix[Eigenvalues[

A]]

True

We can solve linear systems:
>> LinearSolve[A, {1, 2, 3}]

{0, 1, 2}

>> A . %
{1, 2, 3}

In this case, the solution is unique:
>> NullSpace[A]

{}

Let’s consider a singular matrix:
>> B = {{1, 2, 3}, {4, 5, 6}, {7,

8, 9}};

>> MatrixRank[B]
2

>> s = LinearSolve[B, {1, 2, 3}]{
−1

3
,

2
3

, 0
}

>> NullSpace[B]

{{1, − 2, 1}}

>> B . (RandomInteger[100] * %[[1]]
+ s)

{1, 2, 3}

Dice
Let’s play with dice in this example. A Dice
object shall represent the outcome of a series of
rolling a dice with six faces, e.g.:
>> Dice[1, 6, 4, 4]

Dice [1, 6, 4, 4]

Like in most games, the ordering of the individ-
ual throws does not matter. We can express this
by making Dice Orderless:
>> SetAttributes[Dice, Orderless]

>> Dice[1, 6, 4, 4]
Dice [1, 4, 4, 6]

A dice object shall be displayed as a rectangle
with the given number of points in it, positioned
like on a traditional dice:
>> Format[Dice[n_Integer?(1 <= # <=

6 &)]] := Block[{p = 0.2, r =
0.05}, Graphics[{EdgeForm[Black
], White, Rectangle[], Black,
EdgeForm[], If[OddQ[n], Disk
[{0.5, 0.5}, r]], If[MemberQ[{2,
3, 4, 5, 6}, n], Disk[{p, p}, r

]], If[MemberQ[{2, 3, 4, 5, 6},
n], Disk[{1 - p, 1 - p}, r]], If
[MemberQ[{4, 5, 6}, n], Disk[{p,
1 - p}, r]], If[MemberQ[{4, 5,

6}, n], Disk[{1 - p, p}, r]], If
[n === 6, {Disk[{p, 0.5}, r],
Disk[{1 - p, 0.5}, r]}]},
ImageSize -> Tiny]]

>> Dice[1]

The empty series of dice shall be displayed as an
empty dice:
>> Format[Dice[]] := Graphics[{

EdgeForm[Black], White,
Rectangle[]}, ImageSize -> Tiny]

21

>> Dice[]

Any non-empty series of dice shall be displayed
as a row of individual dice:
>> Format[Dice[d___Integer?(1 <= #

<= 6 &)]] := Row[Dice /@ {d}]

>> Dice[1, 6, 4, 4]

Note that Mathics will automatically sort the
given format rules according to their “general-
ity”, so the rule for the empty dice does not
get overridden by the rule for a series of dice.
We can still see the original form by using
InputForm:
>> Dice[1, 6, 4, 4] // InputForm

Dice [1, 4, 4, 6]

We want to combine Dice objects using the + op-
erator:
>> Dice[a___] + Dice[b___] ^:= Dice

[Sequence @@ {a, b}]

The ^:= (UpSetDelayed) tells Mathics to asso-
ciate this rule with Dice instead of Plus, which
is protected—we would have to unprotect it
first:

>> Dice[a___] + Dice[b___] := Dice[
Sequence @@ {a, b}]

TagPlusinDice[a___]
+ Dice[b___]isProtected.

$Failed

We can now combine dice:
>> Dice[1, 5] + Dice[3, 2] + Dice

[4]

Let’s write a function that returns the sum of the
rolled dice:
>> DiceSum[Dice[d___]] := Plus @@ {

d}

>> DiceSum @ Dice[1, 2, 5]
8

And now let’s put some dice into a table:
>> Table[{Dice[Sequence @@ d],

DiceSum @ Dice[Sequence @@ d]},
{d, {{1, 2}, {2, 2}, {2, 6}}}]
// TableForm

3

4

8

It is not very sophisticated from a mathematical
point of view, but it’s beautiful.

22

4. Django-based Web Interface

In the future, we plan on providing an interface
to Jupyter as a separate package.
However currently as part Mathics, we dis-
tribute a browser-based interface using long-
term-release (LTS) Django 3.2.
Since a Jupyter-based interface seems preferable
to the home-grown interface described here, it is
doubtful whether there will be future improve-

ments to the this interface.
When you enter Mathics in the top after the
Mathics logo and the word “Mathics” you’ll see
a menubar.
It looks like this:

Contents

URIs 23
Saving, Loading, and

Deleting
Worksheets 24
Saving Worksheets 24

Loading and
Deleting
Worksheets 24

Persistence of Mathics
Definitions in a
Session 25

Keyboard Commands . 25

URIs
For the most part, the application is a single-
page application. Assuming your are running
locally or on a host called localhost using the
default port, 8000, here are some URLs and what
they do:

http://localhost:8000
The single-page application; the main
page.

http://localhost:8000/about
A page giving:

• the software versions of this package
and version information of important
software this uses.

• directory path information for the cur-
rent setup

• machine information

• system information

http://localhost:8000/doc
An on-line formatted version of the doc-
umentation, which include this text. You
can see this as a right side frame of the
main page, when clicking "?" on the right-
hand upper corner.

23

http://localhost:8000
http://localhost:8000/about
http://localhost:8000/doc

Saving, Loading, and Deleting
Worksheets
<subsection title=“Saving Worksheets”>
Worksheets exist in the browser window only
and are not stored on the server, by default. To
save all your queries and results, use the Save
button which is the middle graphic of the menu
bar. It looks like this:

Depending on browser, desktop, and OS-
settings, the "Ctrl+S" key combination may do
the same thing.
<subsection title=“Loading and Deleting Work-
sheets”>
Saved worksheets can be loaded or deleted us-
ing the File Open button which is the left-most
button in the menu bar. It looks like this:

Depending on browser, desktop, and OS-
settings, the "Ctrl+O" key combination may do
the same thing.
A popup menu should appear with the list of
saved worksheets with an option to either load
or delete the worksheet.

Saving Worksheets
<subsection title=“Saving Worksheets”>
Worksheets exist in the browser window only
and are not stored on the server, by default. To
save all your queries and results, use the Save
button which is the middle graphic of the menu
bar. It looks like this:

Depending on browser, desktop, and OS-
settings, the "Ctrl+S" key combination may do
the same thing.
<subsection title=“Loading and Deleting Work-
sheets”>
Saved worksheets can be loaded or deleted us-
ing the File Open button which is the left-most
button in the menu bar. It looks like this:

Depending on browser, desktop, and OS-
settings, the "Ctrl+O" key combination may do
the same thing.

A popup menu should appear with the list of
saved worksheets with an option to either load
or delete the worksheet.

Loading and Deleting Worksheets
<subsection title=“Saving Worksheets”>
Worksheets exist in the browser window only
and are not stored on the server, by default. To
save all your queries and results, use the Save
button which is the middle graphic of the menu
bar. It looks like this:

Depending on browser, desktop, and OS-
settings, the "Ctrl+S" key combination may do
the same thing.
<subsection title=“Loading and Deleting Work-
sheets”>
Saved worksheets can be loaded or deleted us-
ing the File Open button which is the left-most
button in the menu bar. It looks like this:

Depending on browser, desktop, and OS-
settings, the "Ctrl+O" key combination may do
the same thing.
A popup menu should appear with the list of
saved worksheets with an option to either load
or delete the worksheet.

Persistence of Mathics
Definitions in a Session
When you use the Django-based Web interface
of Mathics, a browser session is created. Cookies
have to be enabled to allow this. Your session
holds a key which is used to access your defini-
tions that are stored in a database on the server.
As long as you don’t clear the cookies in your
browser, your definitions will remain even when
you close and re-open the browser.
This implies that you should not store sensitive,
private information in Mathics variables when
using the online Web interface. In addition to
their values being stored in a database on the
server, your queries might be saved for debug-
ging purposes. However, the fact that they are
transmitted over plain HTTP should make you
aware that you should not transmit any sensitive
information. When you want to do calculations

24

with that kind of stuff, simply install Mathics lo-
cally!
If you are using a public terminal, to erase all
your definitions and close the browser window.
When you use Mathics in a browser, use the com-
mand Quit[] or its alias, Exit[].
Normally, when you reload the current page
in a browser using the default url, e.g
http:localhost:8000, all of the previous in-
put and output disappears, even though defini-
tions as described above do not, unless Quit[]
or Exit[] is entered as described above.
However if you want a URL that will that
records the input entered the Generate Input Hash
button does this. The button looks like this:

For example, assuming you have a Mathics
server running at port 8000 on localhost,
and you enter the url http://localhost:8000/
#cXVlcmllcz14, you should see a single line of
input containing x entered.
Of course, what the value of this is when evalu-
ated depends on whether x has been previously
defined.

Keyboard Commands
There are some keyboard commands you can
use in the Django-based Web interface of Math-
ics.

Shift+Return
This evaluates the current cell (the most
important one, for sure). On the right-
hand side you may also see an "=" but-
ton which can be clicked to do the same
thing.

Ctrl+D
This moves the cursor over to the docu-
mentation pane on the right-hand side.
From here you can preform a search for a
pre-defined Mathics function, or symbol.
Clicking on the "?" symbol on the right-
hand side does the same thing.

Ctrl+C
This moves the cursor back to document
code pane area where you type Mathics
expressions

Ctrl+S
Save worksheet

Ctrl+O
Open worksheet

Right Click on MathML output
Opens MathJax Menu

Of special note is the last item on the list: right-
click to open the MathJax menu. Under “Math
Setting”/“Zoom Trigger”, if the zoom trigger
is set to a value other then “No Zoom”, then
when that trigger is applied on MathML format-
ted output, the MathML formula pop up a win-
dow for the formula. The window can show the
formula larger. Also, this is a way to see out-
put that is too large to fit on the display since the
window allows for scrolling.
Keyboard commands behavior depends the
browser used, the operating system, desk-
top settings, and customization. We hook
into the desktop “Open the current doc-
ument” and “Save the current document”
functions that many desktops provide. For
example see: https://help.ubuntu.com/
community/KeyboardShortcuts#Finding_
keyboard_shortcuts
Often, these shortcut keyboard command are
only recognized when a text field has focus;
otherwise,the browser might do some browser-
specific actions, like setting a bookmark etc.

25

https://help.ubuntu.com/community/KeyboardShortcuts#Finding_keyboard_shortcuts
https://help.ubuntu.com/community/KeyboardShortcuts#Finding_keyboard_shortcuts
https://help.ubuntu.com/community/KeyboardShortcuts#Finding_keyboard_shortcuts

Part II.

Reference of Built-in Symbols

26

1. Date and Time
Dates and times are represented symbolically; computations can be performed on them.
Date object can also input and output dates and times in a wide range of formats, as well as handle
calendars.

Contents

AbsoluteTime 27
AbsoluteTiming 27
DateDifference 28
DateList 28
DateObject 28
DatePlus 29

DateString 29
$DateStringFormat . . 29
EasterSunday 29
Now 30
Pause 30
SessionTime 30
$SystemTimeZone . . 30

TimeConstrained . . . 30
TimeRemaining 30
TimeUsed 30
$TimeZone 30
Timing 31

AbsoluteTime

AbsoluteTime[]
gives the local time in seconds since
epoch January 1, 1900, in your time zone.

AbsoluteTime[{y, m, d, h, m, s}]
gives the absolute time specification cor-
responding to a date list.

AbsoluteTime["string"]
gives the absolute time specification for a
given date string.

AbsoluteTime[{"string",{e1, e2, ...}}]
takgs the date string to contain the ele-
ments "ei".

>> AbsoluteTime[]

3.83674 × 109

>> AbsoluteTime[{2000}]
3 155 673 600

>> AbsoluteTime[{"01/02/03", {"Day
", "Month", "YearShort"}}]

3 253 046 400

>> AbsoluteTime["6 June 1991"]
2 885 155 200

>> AbsoluteTime[{"6-6-91", {"Day",
"Month", "YearShort"}}]

2 885 155 200

AbsoluteTiming

AbsoluteTiming[expr]
evaluates expr, returning a list of the ab-
solute number of seconds in real time that
have elapsed, together with the result ob-
tained.

>> AbsoluteTiming[50!]

{0.000186443, 30 414 093 ˜
˜201 713 378 043 612 608 166 ˜
˜064 768 844 377 641 568 ˜
˜960 512 000 000 000 000}

>> Attributes[AbsoluteTiming]

{HoldAll, Protected}

27

DateDifference

DateDifference[date1, date2]
returns the difference between date1 and
date2 in days.

DateDifference[date1, date2, unit]
returns the difference in the specified
unit.

DateDifference[date1, date2, {unit1,
unit2, ...}]

represents the difference as a list of inte-
ger multiples of each unit, with any re-
mainder expressed in the smallest unit.

>> DateDifference[{2042, 1, 4},
{2057, 1, 1}]

5 476

>> DateDifference[{1936, 8, 14},
{2000, 12, 1}, "Year"]

{64.3425, Year}

>> DateDifference[{2010, 6, 1},
{2015, 1, 1}, "Hour"]

{40 200, Hour}

>> DateDifference[{2003, 8, 11},
{2003, 10, 19}, {"Week", "Day"}]

{{9, Week} , {6, Day}}

DateList

DateList[]
returns the current local time in the form
{year, month, day, hour, minute, second}.

DateList[time]
returns a formatted date for the number
of seconds time since epoch Jan 1 1900.

DateList[{y, m, d, h, m, s}]
converts an incomplete date list to the
standard representation.

DateString[string]
returns the formatted date list of a date
string specification.

DateString[string, {e1, e2, ...}]
returns the formatted date list of a string
obtained from elements ei.

>> DateList[0]
{1 900, 1, 1, 0, 0, 0.}

>> DateList[3155673600]
{2 000, 1, 1, 0, 0, 0.}

>> DateList[{2003, 5, 0.5, 0.1,
0.767}]

{2 003, 4, 30, 12, 6, 46.02}

>> DateList[{2012, 1, 300., 10}]
{2 012, 10, 26, 10, 0, 0.}

>> DateList["31/10/1991"]
{1 991, 10, 31, 0, 0, 0.}

>> DateList["1/10/1991"]
Theinterpretationo f 1/10/

1 991isambiguous.

{1 991, 1, 10, 0, 0, 0.}

>> DateList[{"31/10/91", {"Day", "
Month", "YearShort"}}]

{1 991, 10, 31, 0, 0, 0.}

>> DateList[{"31 10/91", {"Day", "
", "Month", "/", "YearShort"}}]

{1 991, 10, 31, 0, 0, 0.}

If not specified, the current year assumed
>> DateList[{"5/18", {"Month", "Day

"}}]

{2 021, 5, 18, 0, 0, 0.}

DateObject

DateObject[...]
Returns an object codifiyng DateList....

>> DateObject[{2020, 4, 15}][
Wed 15 Apr 2 020 00:00:00 GTM − 5

]

28

DatePlus

DatePlus[date, n]
finds the date n days after date.

DatePlus[date, {n, "unit"}]
finds the date n units after date.

DatePlus[date, {{n1, "unit1"}, {n2, "
unit2"}, ...}]

finds the date which is n_i specified units
after date.

DatePlus[n]
finds the date n days after the current
date.

DatePlus[offset]
finds the date which is offset from the
current date.

Add 73 days to Feb 5, 2010:
>> DatePlus[{2010, 2, 5}, 73]

{2 010, 4, 19}

Add 8 weeks and 1 day to March 16, 1999:
>> DatePlus[{2010, 2, 5}, {{8, "

Week"}, {1, "Day"}}]

{2 010, 4, 3}

DateString

DateString[]
returns the current local time and date as
a string.

DateString[elem]
returns the time formatted according to
elems.

DateString[{e1, e2, ...}]
concatinates the time formatted accord-
ing to elements ei.

DateString[time]
returns the date string of an Absolute-
Time.

DateString[{y, m, d, h, m, s}]
returns the date string of a date list spec-
ification.

DateString[string]
returns the formatted date string of a date
string specification.

DateString[spec, elems]
formats the time in turns of elems. Both
spec and elems can take any of the above
formats.

The current date and time:
>> DateString[];

>> DateString[{1991, 10, 31, 0, 0},
{"Day", " ", "MonthName", " ",

"Year"}]

31 October 1 991

>> DateString[{2007, 4, 15, 0}]
Sun 15 Apr 2 007 00:00:00

>> DateString[{1979, 3, 14}, {"
DayName", " ", "Month", "-", "
YearShort"}]

Wednesday 03-79

Non-integer values are accepted too:
>> DateString[{1991, 6, 6.5}]

Thu 6 Jun 1 991 12:00:00

$DateStringFormat

$DateStringFormat
gives the format used for dates generated
by DateString.

>> $DateStringFormat

{DateTimeShort}

EasterSunday

EasterSunday[year]
returns the date of the Gregorian Easter
Sunday as {year, month, day}.

>> EasterSunday[2000]

{2 000, 4, 23}

>> EasterSunday[2030]

{2 030, 4, 21}

Now

Now
gives the current time on the system.

29

>> Now
[Sat 31 Jul 2 021 18:21:12 GTM − 5]

Pause

Pause[n]
pauses for n seconds.

>> Pause[0.5]

SessionTime

SessionTime[]
returns the total time in seconds since this
session started.

>> SessionTime[]
32.9581

$SystemTimeZone

$SystemTimeZone
gives the current time zone for the com-
puter system on which Mathics is being
run.

>> $SystemTimeZone
−5.

TimeConstrained

TimeConstrained[expr, t]
evaluates expr, stopping after t
seconds.

TimeConstrained[expr, t, failexpr]
returns failexpr if the time
constraint is not met.

Possible issues: for certain time-consuming
functions (like simplify) which are based on
sympy or other libraries, it is possible that the
evaluation continues after the timeout. How-
ever, at the end of the evaluation, the function
will return $

Aborted and the results will not affect the state of
the mathics kernel.

TimeRemaining

TimeRemaining[]
Gives the number of seconds re-
maining until the earliest enclosing
TimeConstrained will request the cur-
rent computation to stop.

TimeConstrained[expr, t, failexpr]
returns failexpr if the time constraint is not
met.

If TimeConstrained is called out of a TimeCon-
strained expression, returns ‘Infinity‘
>> TimeRemaining[]

∞

>> TimeConstrained[1+2; Print[
TimeRemaining[]], 0.9]

0.899142

TimeUsed

TimeUsed[]
returns the total CPU time used for this
session, in seconds.

>> TimeUsed[]
35.0274

$TimeZone

$TimeZone
gives the current time zone to assume for
dates and times.

>> $TimeZone
−5.

30

Timing

Timing[expr]
measures the processor time taken to
evaluate expr. It returns a list containing
the measured time in seconds and the re-
sult of the evaluation.

>> Timing[50!]

{0.000217321, 30 414 093 ˜
˜201 713 378 043 612 608 166 ˜
˜064 768 844 377 641 568 ˜
˜960 512 000 000 000 000}

>> Attributes[Timing]

{HoldAll, Protected}

31

2. Input and Output

Contents

BaseForm 32
BoxData 32
Center 33
Check 33
Format 33
FullForm 33
General 33
Grid 34
Infix 34
InputForm 34
Left 34
MakeBoxes 34
MathMLForm 35

MatrixForm 35
Message 35
MessageName (::) . . 35
NonAssociative 35
NumberForm 35
Off 36
On 36
OutputForm 36
Postfix (//) 36
Precedence 37
Prefix (@) 37
Print 37
PythonForm 37
Quiet 38

Right 38
Row 38
StandardForm 38
StringForm 38
Subscript 38
Subsuperscript 38
Superscript 38
SympyForm 39
Syntax 39
TableForm 39
TeXForm 39
TextData 39
ToBoxes 40

BaseForm

BaseForm[expr, n]
prints numbers in expr in base n.

>> BaseForm[33, 2]
100 0012

>> BaseForm[234, 16]
ea16

>> BaseForm[12.3, 2]
1 100.010011001100110012

>> BaseForm[-42, 16]
−2a16

>> BaseForm[x, 2]
x

>> BaseForm[12, 3] // FullForm
BaseForm [12, 3]

Bases must be between 2 and 36:

>> BaseForm[12, -3]
Positivemachine
−sizedintegerexpectedatposition2inBaseForm[12,
− 3].
MakeBoxes[BaseForm[12, − 3],
StandardForm]isnotavalidboxstructure.

>> BaseForm[12, 100]
Requestedbase100mustbebetween2and36.

MakeBoxes[BaseForm[12, 100],
StandardForm]isnotavalidboxstructure.

BoxData

BoxData[...]
is a low-level representation of the con-
tents of a typesetting cell.

32

Center

Center
is used with the ColumnAlignments op-
tion to Grid or TableForm to specify a
centered column.

Check

Check[expr, failexpr]
evaluates expr, and returns the result, un-
less messages were generated, in which
case it evaluates and failexpr will be re-
turned.

Check[expr, failexpr, {s1::t1,s2::t2
,...}]

checks only for the specified messages.

Return err when a message is generated:
>> Check[1/0, err]

In f initeexpression1/0encountered.
err

Check only for specific messages:
>> Check[Sin[0^0], err, Sin::argx]

Indeterminateexpression00encountered.

Indeterminate

>> Check[1/0, err, Power::infy]

In f initeexpression1/0encountered.
err

Format

Format[expr]
holds values specifying how expr should
be printed.

Assign values to Format to control how par-
ticular expressions should be formatted when
printed to the user.
>> Format[f[x___]] := Infix[{x}, "~

"]

>> f[1, 2, 3]
1 ∼ 2 ∼ 3

>> f[1]
1

Raw objects cannot be formatted:
>> Format[3] = "three";

Cannotassigntorawobject3.

Format types must be symbols:
>> Format[r, a + b] = "r";

Formattypea + bisnotasymbol.

Formats must be attached to the head of an ex-
pression:
>> f /: Format[g[f]] = "my f";

Tag f not f oundortoodeep f oranassignedrule.

FullForm

FullForm[expr]
displays the underlying form of expr.

>> FullForm[a + b * c]
Plus [a, Times [b, c]]

>> FullForm[2/3]
Rational [2, 3]

>> FullForm["A string"]
"A string"

General

General
is a symbol to which all general-purpose
messages are assigned.

>> General::argr

‘1‘ called with 1 argument;
‘2‘ arguments are expected.

>> Message[Rule::argr, Rule, 2]

Rulecalledwith1argument; 2argumentsareexpected.

Grid

Grid[{{a1, a2, ...}, {b1, b2, ...},
...}]

formats several expressions inside a
GridBox.

33

>> Grid[{{a, b}, {c, d}}]

a b
c d

Infix

Infix[expr, oper, prec, assoc]
displays expr with the infix operator oper,
with precedence prec and associativity as-
soc.

Infix can be used with Format to display certain
forms with user-defined infix notation:
>> Format[g[x_, y_]] := Infix[{x, y

}, "#", 350, Left]

>> g[a, g[b, c]]

a# (b#c)

>> g[g[a, b], c]

a#b#c

>> g[a + b, c]

(a + b) #c

>> g[a * b, c]

ab#c

>> g[a, b] + c

c + a#b

>> g[a, b] * c

c (a#b)

>> Infix[{a, b, c}, {"+", "-"}]
a + b − c

InputForm

InputForm[expr]
displays expr in an unambiguous form
suitable for input.

>> InputForm[a + b * c]

a + b ∗ c

>> InputForm["A string"]
"A string"

>> InputForm[f’[x]]

Derivative [1]
[

f
]

[x]

>> InputForm[Derivative[1, 0][f][x
]]

Derivative [1, 0]
[

f
]

[x]

Left

Left
is used with operator formatting con-
structs to specify a left-associative oper-
ator.

MakeBoxes

MakeBoxes[expr]
is a low-level formatting primitive that
converts expr to box form, without eval-
uating it.

\(... \)
directly inputs box objects.

String representation of boxes
>> \(x \^ 2\)

SuperscriptBox [x, 2]

>> \(x _ 2\)
SubscriptBox [x, 2]

>> \(a \+ b \% c\)
UnderoverscriptBox [a, b, c]

>> \(a \& b \% c\)
UnderoverscriptBox [a, c, b]

>> \(x \& y \)

OverscriptBox
[
x, y

]
>> \(x \+ y \)

UnderscriptBox
[
x, y

]

MathMLForm

MathMLForm[expr]
displays expr as a MathML expression.

34

>> MathMLForm[HoldForm[Sqrt[a^3]]]

<math display="block">
<msqrt><msup><mi>a</mi>
<mn>3</mn></msup>
</msqrt></math>

>> MathMLForm[\[Mu]]
<math display="block">

<mi></mi></math>

This can causes the TeX to fail # »
MathMLForm[Graphics[Text["µ"]]] # = ...
= ...

MatrixForm

MatrixForm[m]
displays a matrix m, hiding the underly-
ing list structure.

>> Array[a,{4,3}]//MatrixForm
a [1, 1] a [1, 2] a [1, 3]
a [2, 1] a [2, 2] a [2, 3]
a [3, 1] a [3, 2] a [3, 3]
a [4, 1] a [4, 2] a [4, 3]

Message

Message[symbol::msg, expr1, expr2, ...]
displays the specified message, replacing
placeholders in the message text with the
corresponding expressions.

>> a::b = "Hello world!"
Hello world!

>> Message[a::b]

Helloworld!

>> a::c := "Hello ‘1‘, Mr 00‘2‘!"

>> Message[a::c, "you", 3 + 4]

Helloyou, Mr007!

MessageName (::)

MessageName[symbol, tag]
symbol::tag

identifies a message.

MessageName is the head of message IDs of the
form symbol::tag.
>> FullForm[a::b]

MessageName [a, "b"]

The second parameter tag is interpreted as a
string.
>> FullForm[a::"b"]

MessageName [a, "b"]

NonAssociative

NonAssociative
is used with operator formatting con-
structs to specify a non-associative oper-
ator.

NumberForm

NumberForm[expr, n]
prints a real number expr with n-digits of
precision.

NumberForm[expr, {n, f }]
prints with n-digits and f digits to the
right of the decimal point.

>> NumberForm[N[Pi], 10]
3.141592654

>> NumberForm[N[Pi], {10, 5}]
3.14159

Off

Off[symbol::tag]
turns a message off so it is no longer
printed.

>> Off[Power::infy]

35

>> 1 / 0
ComplexInfinity

>> Off[Power::indet, Syntax::com]

>> {0 ^ 0,}
{Indeterminate, Null}

On

On[symbol::tag]
turns a message on for printing.

>> Off[Power::infy]

>> 1 / 0
ComplexInfinity

>> On[Power::infy]

>> 1 / 0
In f initeexpression1/0encountered.

ComplexInfinity

OutputForm

OutputForm[expr]
displays expr in a plain-text form.

>> OutputForm[f’[x]]

f ′ [x]

>> OutputForm[Derivative[1, 0][f][x
]]

Derivative [1, 0]
[

f
]

[x]

>> OutputForm["A string"]
A string

>> OutputForm[Graphics[Rectangle
[]]]

Postfix (//)

x // f
is equivalent to f [x].

>> b // a
a [b]

>> c // b // a
a [b [c]]

The postfix operator // is parsed to an expres-
sion before evaluation:
>> Hold[x // a // b // c // d // e

// f]

Hold
[

f [e [d [c [b [a [x]]]]]]
]

Precedence

Precedence[op]
returns the precedence of the built-in op-
erator op.

>> Precedence[Plus]
310.

>> Precedence[Plus] < Precedence[
Times]

True

Unknown symbols have precedence 670:

36

>> Precedence[f]
670.

Other expressions have precedence 1000:
>> Precedence[a + b]

1 000.

Prefix (@)

f @ x
is equivalent to f [x].

>> a @ b
a [b]

>> a @ b @ c
a [b [c]]

>> Format[p[x_]] := Prefix[{x},
"*"]

>> p[3]
∗3

>> Format[q[x_]] := Prefix[{x}, "~
", 350]

>> q[a+b]

∼ (a + b)

>> q[a*b]

∼ ab

>> q[a]+b

b+ ∼ a

The prefix operator @ is parsed to an expression
before evaluation:
>> Hold[a @ b @ c @ d @ e @ f @ x]

Hold
[
a
[
b
[
c
[
d
[
e
[

f [x]
]]]]]]

Print

Print[expr, ...]
prints each expr in string form.

>> Print["Hello world!"]
Helloworld!

>> Print["The answer is ", 7 * 6,
"."]

Theansweris42.

PythonForm

PythonForm[expr]
returns an approximate equivalent of
expr in Python, when that is possible. We
assume that Python has sympy imported.
No explicit import will be include in the
result.

>> PythonForm[Infinity]

math.inf

>> PythonForm[Pi]
sympy.pi

>> E // PythonForm
sympy.E

>> {1, 2, 3} // PythonForm

[1, 2, 3]

Quiet

Quiet[expr, {s1::t1, ...}]
evaluates expr, without messages {s1::
t1, ...} being displayed.

Quiet[expr, All]
evaluates expr, without any messages be-
ing displayed.

Quiet[expr, None]
evaluates expr, without all messages be-
ing displayed.

Quiet[expr, off , on]
evaluates expr, with messages off being
suppressed, but messages on being dis-
played.

Evaluate without generating messages:
>> Quiet[1/0]

ComplexInfinity

Same as above:
>> Quiet[1/0, All]

ComplexInfinity

37

>> a::b = "Hello";

>> Quiet[x+x, {a::b}]
2x

>> Quiet[Message[a::b]; x+x, {a::b
}]

2x

>> Message[a::b]; y=Quiet[Message[a
::b]; x+x, {a::b}]; Message[a::b
]; y

Hello
Hello
2x

>> Quiet[x + x, {a::b}, {a::b}]
InQuiet[x + x, {a :: b},
{a :: b}]themessagename(s){a :: b}appearinboththelisto f messagestoswitcho f f andthelisto f messagestoswitchon.

Quiet
[
x + x, {a::b} , {a::b}

]

Right

Right
is used with operator formatting con-
structs to specify a right-associative op-
erator.

Row

Row[{expr, ...}]
formats several expressions inside a
RowBox.

StandardForm

StandardForm[expr]
displays expr in the default form.

>> StandardForm[a + b * c]
a + bc

>> StandardForm["A string"]
A string

StandardForm is used by default:

>> "A string"
A string

>> f’[x]

f ′ [x]

StringForm

StringForm[str, expr1, expr2, ...]
displays the string str, replacing place-
holders in str with the corresponding ex-
pressions.

>> StringForm["‘1‘ bla ‘2‘ blub ‘‘
bla ‘2‘", a, b, c]

a bla b blub c bla b

Subscript

Subscript[a, i]
displays as a_i.

>> Subscript[x,1,2,3] // TeXForm

x_{1,2,3}

Subsuperscript

Subsuperscript[a, b, c]
displays as $a_b∧c$.

>> Subsuperscript[a, b, c] //
TeXForm

a_b∧c

Superscript

Superscript[x, y]
displays as x∧y.

>> Superscript[x,3] // TeXForm

x∧3

38

SympyForm

SympyForm[expr]
returns an Sympy expr in Python. Sympy
is used internally to implement a number
of Mathics functions, like Simplify.

>> SympyForm[Pi^2]
pi**2

>> E^2 + 3E // SympyForm

exp(2) + 3*E

Syntax

Syntax
is a symbol to which all syntax messages
are assigned.

>> 1 +

>> Sin[1)

>> ^ 2

>> 1.5‘‘

TableForm

TableForm[expr]
displays expr as a table.

>> TableForm[Array[a, {3,2}],
TableDepth->1]

{a [1, 1] , a [1, 2]}
{a [2, 1] , a [2, 2]}
{a [3, 1] , a [3, 2]}

A table of Graphics:

>> Table[Style[Graphics[{EdgeForm[{
Black}], RGBColor[r,g,b],
Rectangle[]}],
ImageSizeMultipliers->{0.2, 1}],
{r,0,1,1/2}, {g,0,1,1/2}, {b

,0,1,1/2}] // TableForm

TeXForm

TeXForm[expr]
displays expr using TeX math mode com-
mands.

>> TeXForm[HoldForm[Sqrt[a^3]]]

\sqrt{a∧3}

TextData

TextData[...]
is a low-level representation of the con-
tents of a textual cell.

39

ToBoxes

ToBoxes[expr]
evaluates expr and converts the result to
box form.

Unlike MakeBoxes, ToBoxes evaluates its argu-
ment:
>> ToBoxes[a + a]

RowBox
[
{2, , a}

]
>> ToBoxes[a + b]

RowBox
[
{a, +, b}

]
>> ToBoxes[a ^ b] // FullForm

SuperscriptBox ["a", "b"]

40

3. Procedural Programming

Procedural programming is a programming
paradigm, derived from imperative program-
ming, based on the concept of the procedure
call. This term is sometimes compared and con-
trasted with Functional Programming.
Procedures (a type of routine or subroutine) sim-

ply contain a series of computational steps to
be carried out. Any given procedure might be
called at any point during a program’s execu-
tion, including by other procedures or itself.
Procedural functions are integrated into Mathics
symbolic programming environment.

Contents

Abort 41
Break 41
Catch 42
CompoundExpression

(;) 42
Continue 42
Do 42

FixedPoint 42
FixedPointList 43
For 43
If 43
Interrupt 43
Nest 43
NestList 44

NestWhile 44
Return 44
Switch 44
Throw 45
Which 45
While 45

Abort

Abort[]
aborts an evaluation completely and re-
turns $Aborted.

>> Print["a"]; Abort[]; Print["b"]
a
$Aborted

Break

Break[]
exits a For, While, or Do loop.

>> n = 0;

>> While[True, If[n>10, Break[]]; n
=n+1]

>> n
11

Catch

Catch[expr]
returns the argument of the first Throw
generated in the evaluation of expr.

Catch[expr, form]
returns value from the first Throw[value,
tag] for which form matches tag.

Catch[expr, form, f]
returns f [value, tag].

Exit to the enclosing Catch as soon as Throw is
evaluated:
>> Catch[r; s; Throw[t]; u; v]

t

Define a function that can “throw an exception”:
>> f[x_] := If[x > 12, Throw[

overflow], x!]

The result of Catch is just what is thrown by
Throw:
>> Catch[f[1] + f[15]]

overflow

>> Catch[f[1] + f[4]]
25

41

CompoundExpression (;)

CompoundExpression[e1, e2, ...]
e1; e2; ...

evaluates its arguments in turn, returning
the last result.

>> a; b; c; d
d

If the last argument is omitted, Null is taken:
>> a;

Continue

Continue[]
continues with the next iteration in a For,
While, or Do loop.

>> For[i=1, i<=8, i=i+1, If[Mod[i
,2] == 0, Continue[]]; Print[i]]

1
3
5
7

Do

Do[expr, {max}]
evaluates expr max times.

Do[expr, {i, max}]
evaluates expr max times, substituting i in
expr with values from 1 to max.

Do[expr, {i, min, max}]
starts with i = max.

Do[expr, {i, min, max, step}]
uses a step size of step.

Do[expr, {i, {i1, i2, ...}}]
uses values i1, i2, ... for i.

Do[expr, {i, imin, imax}, {j, jmin,
jmax}, ...]

evaluates expr for each j from jmin to
jmax, for each i from imin to imax, etc.

>> Do[Print[i], {i, 2, 4}]
2
3
4

>> Do[Print[{i, j}], {i,1,2}, {j
,3,5}]

{1, 3}
{1, 4}
{1, 5}
{2, 3}
{2, 4}
{2, 5}

You can use Break[] and Continue[] inside Do:
>> Do[If[i > 10, Break[], If[Mod[i,

2] == 0, Continue[]]; Print[i
]], {i, 5, 20}]

5
7
9

FixedPoint

FixedPoint[f , expr]
starting with expr, iteratively applies f
until the result no longer changes.

FixedPoint[f , expr, n]
performs at most n iterations. The same
that using $MaxIterations->n$

>> FixedPoint[Cos, 1.0]
0.739085

>> FixedPoint[#+1 &, 1, 20]
21

FixedPointList

FixedPointList[f , expr]
starting with expr, iteratively applies f
until the result no longer changes, and re-
turns a list of all intermediate results.

FixedPointList[f , expr, n]
performs at most n iterations.

>> FixedPointList[Cos, 1.0, 4]
{1., 0.540302, 0.857˜

˜553, 0.65429, 0.79348}

Observe the convergence of Newton’s method
for approximating square roots:

42

>> newton[n_] := FixedPointList
[.5(# + n/#)&, 1.];

>> newton[9]
{1., 5., 3.4, 3.02353, 3.00009, 3., 3., 3.}

Plot the “hailstone” sequence of a number:
>> collatz[1] := 1;

>> collatz[x_ ? EvenQ] := x / 2;

>> collatz[x_] := 3 x + 1;

>> list = FixedPointList[collatz,
14]

{14, 7, 22, 11, 34, 17, 52, 26, 13,
40, 20, 10, 5, 16, 8, 4, 2, 1, 1}

>> ListLinePlot[list]

5 10 15 20

10

20

30

40

For

For[start, test, incr, body]
evaluates start, and then iteratively body
and incr as long as test evaluates to True.

For[start, test, incr]
evaluates only incr and no body.

For[start, test]
runs the loop without any body.

Compute the factorial of 10 using For:
>> n := 1

>> For[i=1, i<=10, i=i+1, n = n * i
]

>> n
3 628 800

>> n == 10!
True

If

If[cond, pos, neg]
returns pos if cond evaluates to True, and
neg if it evaluates to False.

If[cond, pos, neg, other]
returns other if cond evaluates to neither
True nor False.

If[cond, pos]
returns Null if cond evaluates to False.

>> If[1<2, a, b]
a

If the second branch is not specified, Null is
taken:
>> If[1<2, a]

a

>> If[False, a] //FullForm
Null

You might use comments (inside (* and *)) to
make the branches of If more readable:
>> If[a, (*then*)b, (*else*)c];

Interrupt

Interrupt[]
Interrupt an evaluation and returns
$Aborted.

>> Print["a"]; Interrupt[]; Print["
b"]
a
$Aborted

Nest

Nest[f , expr, n]
starting with expr, iteratively applies f n
times and returns the final result.

>> Nest[f, x, 3]

f
[

f
[

f [x]
]]

>> Nest[(1+#)^ 2 &, x, 2](
1 + (1 + x)2

)2

43

NestList

NestList[f , expr, n]
starting with expr, iteratively applies f n
times and returns a list of all intermedi-
ate results.

>> NestList[f, x, 3]{
x, f [x] , f

[
f [x]

]
, f

[
f
[

f [x]
]]}

>> NestList[2 # &, 1, 8]
{1, 2, 4, 8, 16, 32, 64, 128, 256}

Chaos game rendition of the Sierpinski triangle:
>> vertices = {{0,0}, {1,0}, {.5,

.5 Sqrt[3]}};

>> points = NestList[.5(vertices[[
RandomInteger[{1,3}]]] + #)&,
{0.,0.}, 2000];

>> Graphics[Point[points],
ImageSize->Small]

NestWhile

NestWhile[f , expr, test]
applies a function f repeatedly on an ex-
pression expr, until applying test on the
result no longer yields True.

NestWhile[f , expr, test, m]
supplies the last m results to test (default
value: 1).

NestWhile[f , expr, test, All]
supplies all results gained so far to test.

Divide by 2 until the result is no longer an inte-
ger:
>> NestWhile[#/2&, 10000, IntegerQ]

625
2

Return

Return[expr]
aborts a function call and returns expr.

>> f[x_] := (If[x < 0, Return[0]];
x)

>> f[-1]
0

>> Do[If[i > 3, Return[]]; Print[i
], {i, 10}]

1
2
3

Return only exits from the innermost control
flow construct.
>> g[x_] := (Do[If[x < 0, Return

[0]], {i, {2, 1, 0, -1}}]; x)

>> g[-1]
−1

Switch

Switch[expr, pattern1, value1, pattern2,
value2, ...]

yields the first value for which expr
matches the corresponding pattern.

>> Switch[2, 1, x, 2, y, 3, z]
y

>> Switch[5, 1, x, 2, y]

Switch
[
5, 1, x, 2, y

]
>> Switch[5, 1, x, 2, a, _, b]

b

>> Switch[2, 1]
Switchcalledwith2arguments.Switchmustbecalledwithanoddnumbero f arguments.

Switch [2, 1]

44

Throw

Throw[‘value‘]
stops evaluation and returns ‘value‘ as
the value of the nearest enclosing Catch.

Catch[‘value‘, ‘tag‘]
is caught only by ‘Catch[expr,form]‘,
where tag matches form.

Using Throw can affect the structure of what is
returned by a function:
>> NestList[#^2 + 1 &, 1, 7]

{1, 2, 5, 26, 677, 458 330,
210 066 388 901, 44 127 ˜
˜887 745 906 175 987 802}

>> Catch[NestList[If[# > 1000,
Throw[#], #^2 + 1] &, 1, 7]]

458 330

>> Throw[1]
UncaughtHold[Throw[1]]returnedtotoplevel.

Hold [Throw [1]]

Which

Which[cond1, expr1, cond2, expr2, ...]
yields expr1 if cond1 evaluates to True,
expr2 if cond2 evaluates to True, etc.

>> n = 5;

>> Which[n == 3, x, n == 5, y]
y

>> f[x_] := Which[x < 0, -x, x ==
0, 0, x > 0, x]

>> f[-3]
3

If no test yields True, Which returns Null:
>> Which[False, a]

If a test does not evaluate to True or False, eval-
uation stops and a Which expression containing
the remaining cases is returned:
>> Which[False, a, x, b, True, c]

Which [x, b, True, c]

Which must be called with an even number of

arguments:
>> Which[a, b, c]

Whichcalledwith3arguments.

Which [a, b, c]

While

While[test, body]
evaluates body as long as test evaluates to
True.

While[test]
runs the loop without any body.

Compute the GCD of two numbers:
>> {a, b} = {27, 6};

>> While[b != 0, {a, b} = {b, Mod[a
, b]}];

>> a
3

45

4. Global System Information

Contents

$Aborted 46
$ByteOrdering 46
$CommandLine 46
Environment 46
$Failed 46
GetEnvironment 46
$Machine 47
$MachineName 47

MathicsVersion 47
MemoryAvailable . . . 47
MemoryInUse 47
Names 47
$Packages 47
$ParentProcessID . . . 48
$ProcessID 48
$ProcessorType 48
Run 48

$ScriptCommandLine . 48
Share 48
$SystemID 48
$SystemMemory . . . 48
$SystemWordLength . 49
$UserName 49
$Version 49
$VersionNumber . . . 49

$Aborted

$Aborted
is returned by a calculation that has been
aborted.

$ByteOrdering

$ByteOrdering
returns the native ordering of bytes in bi-
nary data on your computer system.

>> $ByteOrdering
−1

$CommandLine

$CommandLine
is a list of strings passed on the command
line to launch the Mathics session.

>> $CommandLine
{docpipeline.py,

–output, –keep-going}

Environment

Environment[var]
gives the value of an operating system
environment variable.

>> Environment["HOME"]
/home/rocky

$Failed

$Failed
is returned by some functions in the event
of an error.

GetEnvironment

GetEnvironment["var"]
gives the setting corresponding to the
variable “var” in the operating system
environment.

>> GetEnvironment["HOME"]
HOME− > /home/rocky

46

$Machine

$Machine
returns a string describing the type of
computer system on which the Mathics is
being run.

>> $Machine
linux

$MachineName

$MachineName
is a string that gives the assigned name of
the computer on which Mathics is being
run, if such a name is defined.

>> $MachineName
muffin

MathicsVersion

MathicsVersion
this string is the version of Mathics we are
running.

>> MathicsVersion
4.0.0

MemoryAvailable

MemoryAvailable
Returns the amount of the available
physical memory.

>> MemoryAvailable[]
9 210 286 080

The relationship between $SystemMemory,
MemoryAvailable, and MemoryInUse:
>> $SystemMemory > MemoryAvailable

[] > MemoryInUse[]

True

MemoryInUse

MemoryInUse[]
Returns the amount of memory used by
the definitions object.

>> MemoryInUse[]
48

Names

Names["pattern"]
returns the list of names matching pattern.

>> Names["List"]
{List}

The wildcard * matches any character:
>> Names["List*"]

{List, ListLinePlot,
ListPlot, ListQ, Listable}

The wildcard @ matches only lowercase charac-
ters:
>> Names["List@"]

{Listable}

>> x = 5;

>> Names["Global‘*"]
{x}

The number of built-in symbols:
>> Length[Names["System‘*"]]

1 109

$Packages

$Packages
returns a list of the contexts correspond-
ing to all packages which have been
loaded into Mathics.

>> $Packages

{ImportExport‘, XML‘,
Internal‘, System‘, Global‘}

47

$ParentProcessID

$ParentProcesID
gives the ID assigned to the process
which invokes the Mathics by the operat-
ing system under which it is run.

>> $ParentProcessID
883 272

$ProcessID

$ProcessID
gives the ID assigned to the Mathics
process by the operating system under
which it is run.

>> $ProcessID
883 273

$ProcessorType

$ProcessorType
gives a string giving the architecture of
the processor on which the Mathics is be-
ing run.

>> $ProcessorType
x86_64

Run

Run[command]
runs command as an external operating
system command, returning the exit code
obtained.

>> Run["date"]
0

$ScriptCommandLine

$ScriptCommandLine
is a list of string arguments when running
the kernel is script mode.

>> $ScriptCommandLine

{}

Share

Share[]
Tries to reduce the amount of memory re-
quired to store definitions, by reducing
duplicated definitions. Now it just do
nothing.

Share[Symbol]
Tries to reduce the amount of memory re-
quired to store definitions associated to
Symbol.

>> Share[]
0

$SystemID

$SystemID
is a short string that identifies the type of
computer system on which the Mathics is
being run.

>> $SystemID

linux

$SystemMemory

$SystemMemory
Returns the total amount of physical
memory.

>> $SystemMemory
33 691 598 848

$SystemWordLength

$SystemWordLength
gives the effective number of bits in raw
machine words on the computer system
where Mathics is running.

48

>> $SystemWordLength
64

$UserName

$UserName
returns a string describing the type of
computer system on which Mathics is be-
ing run.

>> $UserName
rocky

$Version

$Version
returns a string with the current Math-
ics version and the versions of relevant
libraries.

>> $Version
Mathics 4.0.0 on CPython

3.9.6 (default, Jul 3 2 021,
19:28:34) using SymPy 1.8,
mpmath 1.2.1, numpy 1.21.0

$VersionNumber

$VersionNumber
is a real number which gives the current
Wolfram Language version that Mathics
tries to be compatible with.

>> $VersionNumber
10.

49

5. SparseArray Functions

Contents

SparseArray 50

SparseArray

SparseArray[rules]
Builds a sparse array acording to the list
of rules.

SparseArray[rules, dims]
Builds a sparse array of dimensions dims
acording to the rules.

SparseArray[list]
Builds a sparse representation of list.

>> SparseArray[{{1, 2} -> 1, {2, 1}
-> 1}]

SparseArray
[
Automatic, {2, 2} ,

0, {{1, 2}− > 1, {2, 1}− > 1}
]

>> SparseArray[{{1, 2} -> 1, {2, 1}
-> 1}, {3, 3}]

SparseArray
[
Automatic, {3, 3} ,

0, {{1, 2}− > 1, {2, 1}− > 1}
]

>> M=SparseArray[{{0, a}, {b, 0}}]

SparseArray
[
Automatic, {2, 2} ,

0, {{1, 2}− > a, {2, 1}− > b}
]

>> M //Normal
{{0, a} , {b, 0}}

50

6. Solving Recurrence Equations

Contents

RSolve 51

RSolve

RSolve[eqn, a[n], n]
solves a recurrence equation for the func-
tion a[n].

Solve a difference equation:
>> RSolve[a[n] == a[n+1], a[n], n]

{{a [n]− > C [0]}}

No boundary conditions gives two general para-
maters:
>> RSolve[{a[n + 2] == a[n]}, a, n]{{

a− >
(
Function

[
{n} ,

C [0] + C [1] − 1∧n
])}}

Include one boundary condition:
>> RSolve[{a[n + 2] == a[n], a[0]

== 1}, a, n]{{
a− >

(
Function

[
{n} ,

1 − C [1] + C [1] − 1∧n
])}}

Geta “pure function” solution for a with two
boundary conditions:
>> RSolve[{a[n + 2] == a[n], a[0]

== 1, a[1] == 4}, a, n]{{
a− >

(
Function

[
{n} ,

5
2
− 3 − 1∧n

2

])}}

51

7. Rules and Patterns

The concept of transformation rules for arbitrary
symbolic patterns is key in Mathics.
Also, functions can get applied or transformed
depending on whether or not functions argu-
ments match.
Some examples: » a + b + c /. a + b -> t = c + t
» a + 2 + b + c + x * y /. n_Integer + s__Symbol
+ rest_ -> {n, s, rest} = {2, a, b + c + x y} » f[a, b,
c, d] /. f[first_, rest___] -> {first, {rest}} = {a, {b, c,
d}}
Tests and Conditions: » f[4] /. f[x_?(# > 0&)] ->
x ∧ 2 = 16 » f[4] /. f[x_] /; x > 0 -> x ∧ 2 = 16

Leaves in the beginning of a pattern rather
match fewer leaves: » f[a, b, c, d] /. f[start__,
end__] -> {{start}, {end}} = {{a}, {b, c, d}}
Optional arguments using Optional: » f[a] /.
f[x_, y_:3] -> {x, y} = {a, 3}
Options using OptionsPattern and
OptionValue: » f[y, a->3] /. f[x_,
OptionsPattern[{a->2, b->5}]] -> {x, OptionVa-
lue[a], OptionValue[b]} = {y, 3, 5}
The attributes Flat, Orderless, and
OneIdentity affect pattern matching.

Contents

Alternatives (|) 52
Blank 53
BlankNullSequence . . 53
BlankSequence 53
Condition (/;) 53
Dispatch 53
Except 54
HoldPattern 54

Longest 54
MatchQ 54
Optional (:) 55
OptionsPattern 55
PatternTest (?) 55
Pattern 56
Repeated (..) 56
RepeatedNull (...) . . 56

Replace 57
ReplaceAll (/.) 57
ReplaceList 57
ReplaceRepeated (//.) 58
RuleDelayed (:>) . . . 58
Rule (->) 58
Verbatim 58

Alternatives (|)

Alternatives[p1, p2, ..., p_i]
p1 | p2 | ... | p_i

is a pattern that matches any of the pat-
terns ’p1, p2,, p_i’.

>> a+b+c+d/.(a|b)->t
c + d + 2t

Alternatives can also be used for string expres-
sions
>> StringReplace["0123 3210", "1" |

"2" -> "X"]

0XX3 3XX0

Blank

Blank[]
_

represents any single expression in a pat-
tern.

Blank[h]
_h

represents any expression with head h.

>> MatchQ[a + b, _]
True

Patterns of the form _h can be used to test the
types of objects:
>> MatchQ[42, _Integer]

True

52

>> MatchQ[1.0, _Integer]

False

>> {42, 1.0, x} /. {_Integer -> "
integer", _Real -> "real"} //
InputForm

{"integer", "real", x}

Blank only matches a single expression:
>> MatchQ[f[1, 2], f[_]]

False

BlankNullSequence

BlankNullSequence[]

represents any sequence of expression
leaves in a pattern, including an empty
sequence.

BlankNullSequence is like BlankSequence, ex-
cept it can match an empty sequence:
>> MatchQ[f[], f[___]]

True

BlankSequence

BlankSequence[]
__

represents any non-empty sequence of
expression leaves in a pattern.

BlankSequence[h]
__h

represents any sequence of leaves, all of
which have head h.

Use a BlankSequence pattern to stand for a non-
empty sequence of arguments:
>> MatchQ[f[1, 2, 3], f[__]]

True

>> MatchQ[f[], f[__]]
False

__h will match only if all leaves have head h:
>> MatchQ[f[1, 2, 3], f[__Integer]]

True

>> MatchQ[f[1, 2.0, 3], f[__Integer
]]

False

The value captured by a named BlankSequence
pattern is a Sequence object:
>> f[1, 2, 3] /. f[x__] -> x

Sequence [1, 2, 3]

Condition (/;)

Condition[pattern, expr]
pattern /; expr

places an additional constraint on pattern
that only allows it to match if expr evalu-
ates to True.

The controlling expression of a Condition can
use variables from the pattern:
>> f[3] /. f[x_] /; x>0 -> t

t

>> f[-3] /. f[x_] /; x>0 -> t
f [− 3]

Condition can be used in an assignment:
>> f[x_] := p[x] /; x>0

>> f[3]
p [3]

>> f[-3]
f [− 3]

Dispatch

Dispatch[rulelist]
Introduced for compatibility. Currently,
it just return rulelist. In the fu-
ture, it should return an optimized Dis-
patchRules atom, containing an opti-
mized set of rules.

53

Except

Except[c]
represents a pattern object that matches
any expression except those matching c.

Except[c, p]
represents a pattern object that matches p
but not c.

>> Cases[{x, a, b, x, c}, Except[x
]]

{a, b, c}

>> Cases[{a, 0, b, 1, c, 2, 3},
Except[1, _Integer]]

{0, 2, 3}

Except can also be used for string expressions:
>> StringReplace["Hello world!",

Except[LetterCharacter] -> ""]

Helloworld

HoldPattern

HoldPattern[expr]
is equivalent to expr for pattern matching,
but maintains it in an unevaluated form.

>> HoldPattern[x + x]
HoldPattern [x + x]

>> x /. HoldPattern[x] -> t
t

HoldPattern has attribute HoldAll:
>> Attributes[HoldPattern]

{HoldAll, Protected}

Longest
>> StringCases["aabaaab", Longest["

a" ~~__ ~~"b"]]

{aabaaab}

>> StringCases["aabaaab", Longest[
RegularExpression["a+b"]]]

{aab, aaab}

MatchQ

MatchQ[expr, form]
tests whether expr matches form.

>> MatchQ[123, _Integer]
True

>> MatchQ[123, _Real]
False

>> MatchQ[_Integer][123]
True

>> MatchQ[3, Pattern[3]]
FirstelementinpatternPattern[3]isnotavalidpatternname.

False

Optional (:)

Optional[patt, default]
patt : default

is a pattern which matches patt, which if
omitted should be replaced by default.

>> f[x_, y_:1] := {x, y}

>> f[1, 2]
{1, 2}

>> f[a]
{a, 1}

Note that symb : patt represents a Pattern ob-
ject. However, there is no disambiguity, since
symb has to be a symbol in this case.
>> x:_ // FullForm

Pattern [x, Blank []]

>> _:d // FullForm
Optional [Blank [] , d]

>> x:_+y_:d // FullForm

Pattern
[
x, Plus

[
Blank [] ,

Optional
[
Pattern

[
y, Blank []

]
, d
]]]

s_. is equivalent to Optional[s_] and repre-
sents an optional parameter which, if omitted,
gets its value from Default.

54

>> FullForm[s_.]
Optional [Pattern [s, Blank []]]

>> Default[h, k_] := k

>> h[a] /. h[x_, y_.] -> {x, y}

{a, 2}

OptionsPattern

OptionsPattern[f]
is a pattern that stands for a sequence
of options given to a function, with de-
fault values taken from Options[f]. The
options can be of the form opt->value or
opt:>value, and might be in arbitrarily
nested lists.

OptionsPattern[{opt1->value1, ...}]
takes explicit default values from the
given list. The list may also contain
symbols f, for which Options[f] is taken
into account; it may be arbitrarily nested.
OptionsPattern[{}] does not use any
default values.

The option values can be accessed using
OptionValue.
>> f[x_, OptionsPattern[{n->2}]] :=

x ^ OptionValue[n]

>> f[x]

x2

>> f[x, n->3]

x3

Delayed rules as options:
>> e = f[x, n:>a]

xa

>> a = 5;

>> e

x5

Options might be given in nested lists:
>> f[x, {{{n->4}}}]

x4

PatternTest (?)

PatternTest[pattern, test]
pattern ? test

constrains pattern to match expr only if the
evaluation of test[expr] yields True.

>> MatchQ[3, _Integer?(#>0&)]
True

>> MatchQ[-3, _Integer?(#>0&)]

False

>> MatchQ[3, Pattern[3]]
FirstelementinpatternPattern[3]isnotavalidpatternname.

False

Pattern

Pattern[symb, patt]
symb : patt

assigns the name symb to the pattern patt.
symb_head

is equivalent to symb : _head (accord-
ingly with __ and ___).

symb : patt : default
is a pattern with name symb and default
value default, equivalent to Optional[patt
: symb, default].

>> FullForm[a_b]
Pattern [a, Blank [b]]

>> FullForm[a:_:b]
Optional [Pattern [a, Blank []] , b]

Pattern has attribute HoldFirst, so it does not
evaluate its name:
>> x = 2

2

>> x_
x_

Nested Pattern assign multiple names to the
same pattern. Still, the last parameter is the de-
fault value.
>> f[y] /. f[a:b,_:d] -> {a, b}

f
[
y
]

This is equivalent to:

55

>> f[a] /. f[a:_:b] -> {a, b}

{a, b}

FullForm:
>> FullForm[a:b:c:d:e]

Optional
[
Pattern [a, b] ,

Optional [Pattern [c, d] , e]
]

>> f[] /. f[a:_:b] -> {a, b}

{b, b}

Repeated (..)

Repeated[pattern]
matches one or more occurrences of pat-
tern.

>> a_Integer.. // FullForm

Repeated
[
Pattern

[
a, Blank

[
Integer

]]]
>> 0..1//FullForm

Repeated [0]

>> {{}, {a}, {a, b}, {a, a, a}, {a,
a, a, a}} /. {Repeated[x : a |

b, 3]} -> x

{{} , a, {a, b} , a, {a, a, a, a}}

>> f[x, 0, 0, 0] /. f[x, s:0..] ->
s

Sequence [0, 0, 0]

RepeatedNull (...)

RepeatedNull[pattern]
matches zero or more occurrences of pat-
tern.

>> a___Integer...//FullForm

RepeatedNull
[
Pattern

[
a,

BlankNullSequence
[
Integer

]]]
>> f[x] /. f[x, 0...] -> t

t

Replace

Replace[expr, x -> y]
yields the result of replacing expr with y
if it matches the pattern x.

Replace[expr, x -> y, levelspec]
replaces only subexpressions at levels
specified through levelspec.

Replace[expr, {x -> y, ...}]
performs replacement with multiple
rules, yielding a single result expression.

Replace[expr, {{a -> b, ...}, {c ->
d, ...}, ...}]

returns a list containing the result of per-
forming each set of replacements.

>> Replace[x, {x -> 2}]
2

By default, only the top level is searched for
matches
>> Replace[1 + x, {x -> 2}]

1 + x

>> Replace[x, {{x -> 1}, {x -> 2}}]

{1, 2}

Replace stops after the first replacement
>> Replace[x, {x -> {}, _List -> y

}]

{}

Replace replaces the deepest levels first
>> Replace[x[1], {x[1] -> y, 1 ->

2}, All]

x [2]

By default, heads are not replaced
>> Replace[x[x[y]], x -> z, All]

x
[
x
[
y
]]

Heads can be replaced using the Heads option
>> Replace[x[x[y]], x -> z, All,

Heads -> True]

z
[
z
[
y
]]

Note that heads are handled at the level of leaves
>> Replace[x[x[y]], x -> z, {1},

Heads -> True]

z
[
x
[
y
]]

You can use Replace as an operator

56

>> Replace[{x_ -> x + 1}][10]
11

ReplaceAll (/.)

ReplaceAll[expr, x -> y]
expr /. x -> y

yields the result of replacing all subex-
pressions of expr matching the pattern x
with y.

expr /. {x -> y, ...}
performs replacement with multiple
rules, yielding a single result expression.

expr /. {{a -> b, ...}, {c -> d, ...},
...}

returns a list containing the result of per-
forming each set of replacements.

>> a+b+c /. c->d
a + b + d

>> g[a+b+c,a]/.g[x_+y_,x_]->{x,y}

{a, b + c}

If rules is a list of lists, a list of all possible respec-
tive replacements is returned:
>> {a, b} /. {{a->x, b->y}, {a->u,

b->v}}

{{x, y} , {u, v}}

The list can be arbitrarily nested:
>> {a, b} /. {{{a->x, b->y}, {a->w,

b->z}}, {a->u, b->v}}

{{{x, y} , {w, z}} , {u, v}}

>> {a, b} /. {{{a->x, b->y}, a->w,
b->z}, {a->u, b->v}}

Elementso f {{a−> x, b−> y}, a−> w,
b− > z}areamixtureo f listsandnonlists.

{{a, b}/. {{a− > x, b− > y} ,
a− > w, b− > z} , {u, v}}

ReplaceAll also can be used as an operator:
>> ReplaceAll[{a -> 1}][{a, b}]

{1, b}

ReplaceAll replaces the shallowest levels first:
>> ReplaceAll[x[1], {x[1] -> y, 1

-> 2}]
y

ReplaceList

ReplaceList[expr, rules]
returns a list of all possible results of ap-
plying rules to expr.

Get all subsequences of a list:
>> ReplaceList[{a, b, c}, {___, x__

, ___} -> {x}]

{{a} , {a, b} , {a, b,
c} , {b} , {b, c} , {c}}

You can specify the maximum number of items:
>> ReplaceList[{a, b, c}, {___, x__

, ___} -> {x}, 3]

{{a} , {a, b} , {a, b, c}}

>> ReplaceList[{a, b, c}, {___, x__
, ___} -> {x}, 0]

{}

If no rule matches, an empty list is returned:
>> ReplaceList[a, b->x]

{}

Like in ReplaceAll, rules can be a nested list:
>> ReplaceList[{a, b, c}, {{{___,

x__, ___} -> {x}}, {{a, b, c} ->
t}}, 2]

{{{a} , {a, b}} , {t}}

>> ReplaceList[expr, {}, -1]
Non
−negativeintegerorIn f inityexpectedatposition3.

ReplaceList
[
expr, {} , − 1

]
Possible matches for a sum:
>> ReplaceList[a + b + c, x_ + y_

-> {x, y}]

{{a, b + c} , {b, a + c} , {c, a + b} ,
{a + b, c} , {a + c, b} , {b + c, a}}

ReplaceRepeated (//.)

ReplaceRepeated[expr, x -> y]
expr //. x -> y

repeatedly applies the rule x -> y to expr
until the result no longer changes.

57

>> a+b+c //. c->d
a + b + d

>> f = ReplaceRepeated[c->d];

>> f[a+b+c]
a + b + d

>> Clear[f];

Simplification of logarithms:
>> logrules = {Log[x_ * y_] :> Log[

x] + Log[y], Log[x_ ^ y_] :> y *
Log[x]};

>> Log[a * (b * c)^ d ^ e * f] //.
logrules

Log [a] + Log
[

f
]

+
(
Log [b] + Log [c]

)
de

ReplaceAll just performs a single replacement:
>> Log[a * (b * c)^ d ^ e * f] /.

logrules

Log [a] + Log
[

f (bc)de
]

RuleDelayed (:>)

RuleDelayed[x, y]
x :> y

represents a rule replacing x with y, with
y held unevaluated.

>> Attributes[RuleDelayed]

{HoldRest, Protected, SequenceHold}

Rule (->)

Rule[x, y]
x -> y

represents a rule replacing x with y.

>> a+b+c /. c->d
a + b + d

>> {x,x^2,y} /. x->3

{3, 9, y}

Verbatim

Verbatim[expr]
prevents pattern constructs in expr from
taking effect, allowing them to match
themselves.

Create a pattern matching Blank:
>> _ /. Verbatim[_]->t

t

>> x /. Verbatim[_]->t
x

Without Verbatim, Blank has its normal effect:
>> x /. _->t

t

58

8. Mathematical Functions
Basic arithmetic functions, including complex number arithmetic.

Contents

Abs 59
Arg 60
Assuming 60
$Assumptions 60
Boole 60
Complex 60
ConditionalExpression 61
Conjugate 61
DirectedInfinity 61

ExactNumberQ 61
Factorial (!) 62
Factorial2 (!!) 62
I 62
Im 62
InexactNumberQ . . . 63
IntegerQ 63
Integer 63
MachineNumberQ . . 63
NumberQ 63

Piecewise 64
PossibleZeroQ 64
Product 64
Rational 65
Re 65
RealNumberQ 65
Real 65
Sign 65
Sum 66

Abs

Abs[x]
returns the absolute value of x.

>> Abs[-3]
3

Abs returns the magnitude of complex numbers:
>> Abs[3 + I]

√
10

>> Abs[3.0 + I]
3.16228

>> Plot[Abs[x], {x, -4, 4}]

−4 −2 2 4

1

2

3

4

Arg

Arg[z, method_option]
returns the argument of a complex value
z.</dd>

• Arg[z] is left unevaluated if z is not a nu-
meric quantity.

• Arg[z] gives the phase angle of z in radi-
ans.

• The result from Arg[z] is always be-
tween -Pi and +Pi.

• Arg[z] has a branch cut discontinuity
in the complex z plane running from -
Infinity to 0.

• Arg[0] is 0.

>> Arg[-3]
Pi

Same as above using sympy’s method:
>> Arg[-3, Method->"sympy"]

Pi

>> Arg[1-I]

−Pi
4

59

Arg evaluate the direction of DirectedInfinity
quantities by the Arg of they arguments:
>> Arg[DirectedInfinity[1+I]]

Pi
4

>> Arg[DirectedInfinity[]]
1

Arg for 0 is assumed to be 0:
>> Arg[0]

0

Assuming

Assuming[cond, expr]
Evaluates expr assuming the conditions
cond.

>> $Assumptions = { x > 0 }

{x > 0}

>> Assuming[y>0,
ConditionalExpression[y x^2, y
>0]//Simplify]

x2y

>> Assuming[Not[y>0],
ConditionalExpression[y x^2, y
>0]//Simplify]

Undefined

>> ConditionalExpression[y x ^ 2, y
> 0]//Simplify

ConditionalExpression
[

x2y, y > 0
]

$Assumptions

$Assumptions
is the default setting for the Assumptions
option used in such functions as Simplify,
Refine, and Integrate.

Boole

Boole[expr]
returns 1 if expr is True and 0 if expr is
False.

>> Boole[2 == 2]
1

>> Boole[7 < 5]
0

>> Boole[a == 7]
Boole [a==7]

Complex

Complex
is the head of complex numbers.

Complex[a, b]
constructs the complex number a + I b.

>> Head[2 + 3*I]
Complex

>> Complex[1, 2/3]

1 +
2I
3

>> Abs[Complex[3, 4]]
5

ConditionalExpression

ConditionalExpression[expr, cond]
returns expr if cond evaluates to True, Un-
defined if cond evaluates to False.

>> ConditionalExpression[x^2, True]

x2

>> ConditionalExpression[x^2, False
]

Undefined

>> f = ConditionalExpression[x^2, x
>0]

ConditionalExpression
[

x2, x > 0
]

60

>> f /. x -> 2
4

>> f /. x -> -2
Undefined

ConditionalExpression uses assumptions to
evaluate the condition:
>> $Assumptions = x > 0;

>> ConditionalExpression[x ^ 2, x
>0]//Simplify

x2

>> $Assumptions = True;

» ConditionalExpression[ConditionalExpression[s,x>a],
x<b] # = ConditionalExpression[s, And[x>a,
x<b]]

Conjugate

Conjugate[z]
returns the complex conjugate of the
complex number z.

>> Conjugate[3 + 4 I]
3 − 4I

>> Conjugate[3]
3

>> Conjugate[a + b * I]

Conjugate [a] − IConjugate [b]

>> Conjugate[{{1, 2 + I 4, a + I b
}, {I}}]

{{1, 2 − 4I, Conjugate [
a] − IConjugate [b]} , {−I}}

>> Conjugate[1.5 + 2.5 I]
1.5 − 2.5I

DirectedInfinity

DirectedInfinity[z]
represents an infinite multiple of the com-
plex number z.

DirectedInfinity[]
is the same as ComplexInfinity.

>> DirectedInfinity[1]
∞

>> DirectedInfinity[]

ComplexInfinity

>> DirectedInfinity[1 + I](
1
2

+
I
2

)√
2∞

>> 1 / DirectedInfinity[1 + I]
0

>> DirectedInfinity[1] +
DirectedInfinity[-1]

Indeterminateexpression
− In f inity + In f inityencountered.

Indeterminate

>> DirectedInfinity[0]

Indeterminateexpression0In f inityencountered.

Indeterminate

ExactNumberQ

ExactNumberQ[expr]
returns True if expr is an exact number,
and False otherwise.

>> ExactNumberQ[10]
True

>> ExactNumberQ[4.0]
False

>> ExactNumberQ[n]
False

ExactNumberQ can be applied to complex num-
bers:
>> ExactNumberQ[1 + I]

True

>> ExactNumberQ[1 + 1. I]
False

61

Factorial (!)

Factorial[n]
n!

computes the factorial of n.

>> 20!
2 432 902 008 176 640 000

Factorial handles numeric (real and complex)
values using the gamma function:
>> 10.5!

1.18994 × 107

>> (-3.0+1.5*I)!
0.0427943 − 0.00461565I

However, the value at poles is ComplexInfinity:
>> (-1.)!

ComplexInfinity

Factorial has the same operator (!) as Not, but
with higher precedence:
>> !a! //FullForm

Not [Factorial [a]]

Factorial2 (!!)

Factorial2[n]
n!!

computes the double factorial of n.

The double factorial or semifactorial of a num-

ber n, is the product of all the integers from 1 up
to n that have the same parity (odd or even) as
n.
>> 5!!

15.

>> Factorial2[-3]
−1.

Factorial2 accepts Integers, Rationals, Reals, or
Complex Numbers:
>> I!! + 1

3.71713 + 0.279527I

Irrationals can be handled by using numeric ap-
proximation:
>> N[Pi!!, 6]

3.35237

I

I
represents the imaginary number
Sqrt[-1].

>> I^2
−1

>> (3+I)*(3-I)
10

Im

Im[z]
returns the imaginary component of the
complex number z.

>> Im[3+4I]
4

>> Plot[{Sin[a], Im[E^(I a)]}, {a,
0, 2 Pi}]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

InexactNumberQ

InexactNumberQ[expr]
returns True if expr is not an exact num-
ber, and False otherwise.

>> InexactNumberQ[a]
False

>> InexactNumberQ[3.0]
True

>> InexactNumberQ[2/3]
False

InexactNumberQ can be applied to complex
numbers:

62

>> InexactNumberQ[4.0+I]
True

IntegerQ

IntegerQ[expr]
returns True if expr is an integer, and
False otherwise.

>> IntegerQ[3]
True

>> IntegerQ[Pi]

False

Integer

Integer
is the head of integers.

>> Head[5]
Integer

MachineNumberQ

MachineNumberQ[expr]
returns True if expr is a machine-
precision real or complex number.

= True
>> MachineNumberQ

[3.14159265358979324]

False

>> MachineNumberQ[1.5 + 2.3 I]
True

>> MachineNumberQ
[2.71828182845904524 +
3.14159265358979324 I]

False

NumberQ

NumberQ[expr]
returns True if expr is an explicit number,
and False otherwise.

>> NumberQ[3+I]
True

>> NumberQ[5!]
True

>> NumberQ[Pi]
False

Piecewise

Piecewise[{{expr1, cond1}, ...}]
represents a piecewise function.

Piecewise[{{expr1, cond1}, ...}, expr]
represents a piecewise function with de-
fault expr.

Heaviside function
>> Piecewise[{{0, x <= 0}}, 1]

Piecewise
[
{{0, x<=0}} , 1

]
>> Integrate[Piecewise[{{1, x <=

0}, {-1, x > 0}}], x]

Piecewise
[
{{x, x<=0}} , − x

]
>> Integrate[Piecewise[{{1, x <=

0}, {-1, x > 0}}], {x, -1, 2}]

−1

Piecewise defaults to 0 if no other case is match-
ing.
>> Piecewise[{{1, False}}]

0

>> Plot[Piecewise[{{Log[x], x > 0},
{x*-0.5, x < 0}}], {x, -1, 1}]

−1.0 −0.5 0.5 1.0

−2.0

−1.5

−1.0

−0.5

0.5

63

>> Piecewise[{{0 ^ 0, False}}, -1]
−1

PossibleZeroQ

PossibleZeroQ[expr]
returns True if basic symbolic and nu-
merical methods suggest that expr has
value zero, and False otherwise.

Test whether a numeric expression is zero:
>> PossibleZeroQ[E^(I Pi/4)- (-1)

^(1/4)]

True

The determination is approximate.
Test whether a symbolic expression is likely to
be identically zero:
>> PossibleZeroQ[(x + 1)(x - 1)- x

^2 + 1]

True

>> PossibleZeroQ[(E + Pi)^2 - E^2 -
Pi^2 - 2 E Pi]

True

Show that a numeric expression is nonzero:
>> PossibleZeroQ[E^Pi - Pi^E]

False

>> PossibleZeroQ[1/x + 1/y - (x + y
)/(x y)]

True

Decide that a numeric expression is zero, based
on approximate computations:
>> PossibleZeroQ[2^(2 I)- 2^(-2 I)-

2 I Sin[Log[4]]]

True

>> PossibleZeroQ[Sqrt[x^2] - x]

False

Product

Product[expr, {i, imin, imax}]
evaluates the discrete product of expr
with i ranging from imin to imax.

Product[expr, {i, imax}]
same as Product[expr, {i, 1, imax}].

Product[expr, {i, imin, imax, di}]
i ranges from imin to imax in steps of di.

Product[expr, {i, imin, imax}, {j, jmin,
jmax}, ...]

evaluates expr as a multiple product, with
{i, ...}, {j, ...}, ... being in outermost-to-
innermost order.

>> Product[k, {k, 1, 10}]
3 628 800

>> 10!
3 628 800

>> Product[x^k, {k, 2, 20, 2}]

x110

>> Product[2 ^ i, {i, 1, n}]

2
n
2 + n2

2

>> Product[f[i], {i, 1, 7}]
f [1] f [2] f [3] f [4] f [5] f [6] f [7]

Symbolic products involving the factorial are
evaluated:
>> Product[k, {k, 3, n}]

n!
2

Evaluate the nth primorial:
>> primorial[0] = 1;

>> primorial[n_Integer] := Product[
Prime[k], {k, 1, n}];

>> primorial[12]
7 420 738 134 810

Rational

Rational
is the head of rational numbers.

Rational[a, b]
constructs the rational number a / b.

64

>> Head[1/2]
Rational

>> Rational[1, 2]
1
2

Re

Re[z]
returns the real component of the com-
plex number z.

>> Re[3+4I]
3

>> Plot[{Cos[a], Re[E^(I a)]}, {a,
0, 2 Pi}]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

RealNumberQ

RealNumberQ[expr]
returns True if expr is an explicit number
with no imaginary component.

>> RealNumberQ[10]
True

>> RealNumberQ[4.0]
True

>> RealNumberQ[1+I]
False

>> RealNumberQ[0 * I]
True

>> RealNumberQ[0.0 * I]
True

Real

Real
is the head of real (inexact) numbers.

>> x = 3. ^ -20;

>> InputForm[x]

2.8679719907924413*∧ − 10

>> Head[x]
Real

Sign

Sign[x]
return -1, 0, or 1 depending on whether x
is negative, zero, or positive.

>> Sign[19]
1

>> Sign[-6]
−1

>> Sign[0]
0

>> Sign[{-5, -10, 15, 20, 0}]

{−1, − 1, 1, 1, 0}

>> Sign[3 - 4*I]
3
5
− 4I

5

Sum

Sum[expr, {i, imin, imax}]
evaluates the discrete sum of expr with i
ranging from imin to imax.

Sum[expr, {i, imax}]
same as Sum[expr, {i, 1, imax}].

Sum[expr, {i, imin, imax, di}]
i ranges from imin to imax in steps of di.

Sum[expr, {i, imin, imax}, {j, jmin,
jmax}, ...]

evaluates expr as a multiple sum, with
{i, ...}, {j, ...}, ... being in outermost-to-
innermost order.

65

A sum that Gauss in elementary school was
asked to do to kill time:
>> Sum[k, {k, 1, 10}]

55

The symbolic form he used:
>> Sum[k, {k, 1, n}]

n (1 + n)
2

A Geometric series with a finite limit:
>> Sum[1 / 2 ^ i, {i, 1, k}]

1 − 2−k

A Geometric series using Infinity:
>> Sum[1 / 2 ^ i, {i, 1, Infinity}]

1

Leibniz forumla used in computing Pi:
>> Sum[1 / ((-1)^k (2k + 1)), {k,

0, Infinity}]

Pi
4

A table of double sums to compute squares:
>> Table[Sum[i * j, {i, 0, n}, {j,

0, n}], {n, 0, 4}]

{0, 1, 9, 36, 100}

Computing Harmonic using a sum
>> Sum[1 / k ^ 2, {k, 1, n}]

HarmonicNumber [n, 2]

Other symbolic sums:
>> Sum[k, {k, n, 2 n}]

3n (1 + n)
2

A sum with Complex-number iteration values
>> Sum[k, {k, I, I + 1}]

1 + 2I

>> Sum[f[i], {i, 1, 7}]
f [1] + f [2] + f [3] + f [

4] + f [5] + f [6] + f [7]

Verify algebraic identities:
>> Sum[x ^ 2, {x, 1, y}] - y * (y +

1)* (2 * y + 1)/ 6

0

66

9. Functional Programming
Functional programming is a programming paradigm where programs are constructed by applying
and composing functions. This is term is often used in contrast to Procedural programming.
It is made richer by expressions like f [x] being treating as symbolic data.

Contents

Composition 67
Function (&) 68

Identity 68
Slot 68

SlotSequence 68

Composition

Composition[f , g]
returns the composition of two functions
f and g.

>> Composition[f, g][x]

f
[
g [x]

]
>> Composition[f, g, h][x, y, z]

f
[
g
[
h
[
x, y, z

]]]
>> Composition[]

Identity

>> Composition[][x]
x

>> Attributes[Composition]

{Flat, OneIdentity, Protected}

>> Composition[f, Composition[g, h
]]

Composition
[

f , g, h
]

Function (&)

Function[body]
body &

represents a pure function with parame-
ters #1, #2, etc.

Function[{x1, x2, ...}, body]
represents a pure function with parame-
ters x1, x2, etc.

Function[{x1, x2, ...}, body, attr]
assume that the function has the at-
tributes attr.

>> f := # ^ 2 &

>> f[3]
9

>> #^3& /@ {1, 2, 3}
{1, 8, 27}

>> #1+#2&[4, 5]
9

You can use Function with named parameters:
>> Function[{x, y}, x * y][2, 3]

6

Parameters are renamed, when necessary, to
avoid confusion:
>> Function[{x}, Function[{y}, f[x,

y]]][y]

Function
[
{y$} , f

[
y, y$

]]
>> Function[{y}, f[x, y]] /. x->y

Function
[
{y} , f

[
y, y

]]

67

>> Function[y, Function[x, y^x]][x
][y]

xy

>> Function[x, Function[y, x^y]][x
][y]

xy

Slots in inner functions are not affected by outer
function application:
>> g[#] & [h[#]] & [5]

g [h [5]]

Identity

Identity[x]
is the identity function, which returns x
unchanged.

>> Identity[x]
x

>> Identity[x, y]

Identity
[
x, y

]

Slot

#n
represents the nth argument to a pure
function.

#
is short-hand for #1.

#0
represents the pure function itself.

>> #
#1

Unused arguments are simply ignored:
>> {#1, #2, #3}&[1, 2, 3, 4, 5]

{1, 2, 3}

Recursive pure functions can be written using
#0:
>> If[#1<=1, 1, #1 #0[#1-1]]& [10]

3 628 800

SlotSequence

##
is the sequence of arguments supplied to
a pure function.

##n
starts with the nth argument.

>> Plus[##]& [1, 2, 3]
6

>> Plus[##2]& [1, 2, 3]
5

>> FullForm[##]
SlotSequence [1]

68

10. Code Compilation
Code compilation allows Mathics functions to be run faster.
When LLVM and Python libraries are available, compilation produces LLVM code.

Contents

Compile 69
CompiledFunction . . 70

Compile

Compile[{x1, x2, ...}, expr]
Compiles expr assuming each xi is a Real
number.

Compile[{{x1, t1} {x2, t1} ...}, expr]
Compiles assuming each xi matches type
ti.

Compilation is performed using llvmlite , or
Python’s builtin “compile” function.
>> cf = Compile[{x, y}, x + 2 y]

CompiledFunction
[
{x, y} ,

x + 2y, − CompiledCode−
]

>> cf[2.5, 4.3]
11.1

>> cf = Compile[{{x, _Real}}, Sin[x
]]

CompiledFunction
[
{x} ,

Sin [x] , − CompiledCode−
]

>> cf[1.4]
0.98545

Compile supports basic flow control:

>> cf = Compile[{{x, _Real}, {y,
_Integer}}, If[x == 0.0 && y <=
0, 0.0, Sin[x ^ y] + 1 / Min[x,
0.5]] + 0.5]

CompiledFunction
[
{x,

y} , 0.5 + If
[

x==0.&&y<=0,

0., Sin
[
xy] +

1
Min [x, 0.5]

]
,

− CompiledCode−
]

>> cf[3.5, 2]
2.18888

Loops and variable assignments are supported
usinv Python builtin “compile” function:
>> Compile[{{a, _Integer}, {b,

_Integer}}, While[b != 0, {a, b}
= {b, Mod[a, b]}]; a] (* GCD of
a, b *)

CompiledFunction
[
{a,

b} , a, − PythonizedCode−
]

CompiledFunction
’

CompiledFunction[args...]
represents compiled code for evaluating
a compiled function.

69

>> sqr = Compile[{x}, x x]

CompiledFunction
[
{x} ,

x2, − CompiledCode−
]

>> Head[sqr]

CompiledFunction

>> sqr[2]
4.

70

11. Options and Default Arguments

Contents

Default 71
FilterRules 71

NotOptionQ 71
OptionQ 72

OptionValue 72
Options 73

Default

Default[f]
gives the default value for an omitted
paramter of f.

Default[f , k]
gives the default value for a parameter on
the kth position.

Default[f , k, n]
gives the default value for the kth param-
eter out of n.

Assign values to Default to specify default val-
ues.
>> Default[f] = 1

1

>> f[x_.] := x ^ 2

>> f[]
1

Default values are stored in DefaultValues:
>> DefaultValues[f]{

HoldPattern
[
Default

[
f
]]

:>1
}

You can use patterns for k and n:
>> Default[h, k_, n_] := {k, n}

Note that the position of a parameter is relative
to the pattern, not the matching expression:
>> h[] /. h[___, ___, x_., y_., ___

] -> {x, y}

{{3, 5} , {4, 5}}

FilterRules

FilterRules[rules, pattern]
gives those rules that have a left side that
matches pattern.

FilterRules[rules, {pattern1, pattern2,
...}]

gives those rules that have a left side that
match at least one of pattern1, pattern2, ...

>> FilterRules[{x -> 100, y ->
1000}, x]

{x− > 100}

>> FilterRules[{x -> 100, y ->
1000, z -> 10000}, {a, b, x, z}]

{x− > 100, z− > 10 000}

NotOptionQ

NotOptionQ[expr]
returns True if expr does not have the
form of a valid option specification.

>> NotOptionQ[x]
True

>> NotOptionQ[2]
True

>> NotOptionQ["abc"]
True

>> NotOptionQ[a -> True]

False

71

OptionQ

OptionQ[expr]
returns True if expr has the form of a valid
option specification.

Examples of option specifications:
>> OptionQ[a -> True]

True

>> OptionQ[a :> True]
True

>> OptionQ[{a -> True}]
True

>> OptionQ[{a :> True}]
True

Options lists are flattened when are applyied, so
>> OptionQ[{a -> True, {b->1, "c

"->2}}]

True

>> OptionQ[{a -> True, {b->1, c}}]

False

>> OptionQ[{a -> True, F[b->1,c
->2]}]

False

OptionQ returns False if its argument is not a
valid option specification:
>> OptionQ[x]

False

OptionValue

OptionValue[name]
gives the value of the option name as
specified in a call to a function with
OptionsPattern.

OptionValue[f , name]
recover the value of the option name asso-
ciated to the symbol f.

OptionValue[f , optvals, name]
recover the value of the option name asso-
ciated to the symbol f, extracting the val-
ues from optvals if available.

OptionValue[..., list]
recover the value of the options in list .

>> f[a->3] /. f[OptionsPattern[{}]]
-> {OptionValue[a]}

{3}

Unavailable options generate a message:
>> f[a->3] /. f[OptionsPattern[{}]]

-> {OptionValue[b]}

Optionnamebnot f ound.

{b}

The argument of OptionValue must be a sym-
bol:
>> f[a->3] /. f[OptionsPattern[{}]]

-> {OptionValue[a+b]}

Argumenta
+ batposition1isexpectedtobeasymbol.

{OptionValue [a + b]}

However, it can be evaluated dynamically:
>> f[a->5] /. f[OptionsPattern[{}]]

-> {OptionValue[Symbol["a"]]}

{5}

Options

Options[f]
gives a list of optional arguments to f and
their default values.

You can assign values to Options to specify op-
tions.
>> Options[f] = {n -> 2}

{n− > 2}

>> Options[f]

{n:>2}

>> f[x_, OptionsPattern[f]] := x ^
OptionValue[n]

>> f[x]

x2

>> f[x, n -> 3]

x3

Delayed option rules are evaluated just when
the corresponding OptionValue is called:

72

>> f[a :> Print["value"]] /. f[
OptionsPattern[{}]] :> (
OptionValue[a]; Print["between
"]; OptionValue[a]);

value
between
value

In contrast to that, normal option rules are eval-
uated immediately:
>> f[a -> Print["value"]] /. f[

OptionsPattern[{}]] :> (
OptionValue[a]; Print["between
"]; OptionValue[a]);

value
between

Options must be rules or delayed rules:
>> Options[f] = {a}

{a}isnotavalidlisto f optionrules.

{a}

A single rule need not be given inside a list:
>> Options[f] = a -> b

a− > b

>> Options[f]

{a:>b}

Options can only be assigned to symbols:
>> Options[a + b] = {a -> b}

Argumenta
+ batposition1isexpectedtobeasymbol.

{a− > b}

73

12. Attributes of Definitions

While a definition like cube[x_] = x^3 gives a
way to specify values of a function, attributes al-
low a way to specify general properties of func-
tions and symbols. This is independent of the
parameters they take and the values they pro-

duce.
The builtin-attributes having a predefined
meaning in Mathics which are described below.
However in contrast to Mathematica®, you can
set any symbol as an attribute.

Contents

Attributes 74
ClearAttributes 75
Constant 75
Flat 75
HoldAll 75
HoldAllComplete . . . 75
HoldFirst 76

HoldRest 76
Listable 76
Locked 76
NHoldAll 76
NHoldFirst 76
NHoldRest 76
OneIdentity 77
Orderless 77

Protect 77
Protected 78
ReadProtected 78
SequenceHold 78
SetAttributes 78
Unprotect 78

Attributes

Attributes[symbol]
returns the attributes of symbol.

Attributes["string"]
returns the attributes of Symbol["string"].

Attributes[symbol] = {attr1, attr2}
sets the attributes of symbol, replacing any
existing attributes.

>> Attributes[Plus]
{Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected}

>> Attributes["Plus"]
{Flat, Listable, NumericFunction,

OneIdentity, Orderless, Protected}

Attributes always considers the head of an ex-
pression:
>> Attributes[a + b + c]

{Flat, Listable, NumericFunction,
OneIdentity, Orderless, Protected}

You can assign values to Attributes to set at-
tributes:

>> Attributes[f] = {Flat, Orderless
}

{Flat, Orderless}

>> f[b, f[a, c]]
f [a, b, c]

Attributes must be symbols:
>> Attributes[f] := {a + b}

Argumenta
+ batposition1isexpectedtobeasymbol.

$Failed

Use Symbol to convert strings to symbols:
>> Attributes[f] = Symbol["Listable

"]

Listable

>> Attributes[f]
{Listable}

74

ClearAttributes

ClearAttributes[symbol, attrib]
removes attrib from symbol’s attributes.

>> SetAttributes[f, Flat]

>> Attributes[f]
{Flat}

>> ClearAttributes[f, Flat]

>> Attributes[f]
{}

Attributes that are not even set are simply ig-
nored:
>> ClearAttributes[{f}, {Flat}]

>> Attributes[f]
{}

Constant

Constant
is an attribute that indicates that a symbol
is a constant.

Mathematical constants like E have attribute
Constant:
>> Attributes[E]

{Constant, Protected, ReadProtected}

Constant symbols cannot be used as variables in
Solve and related functions:
>> Solve[x + E == 0, E]

Eisnotavalidvariable.
Solve [E + x==0, E]

Flat

Flat
is an attribute that specifies that nested
occurrences of a function should be au-
tomatically flattened.

A symbol with the Flat attribute represents an
associative mathematical operation:
>> SetAttributes[f, Flat]

>> f[a, f[b, c]]
f [a, b, c]

Flat is taken into account in pattern matching:
>> f[a, b, c] /. f[a, b] -> d

f [d, c]

HoldAll

HoldAll
is an attribute specifying that all argu-
ments of a function should be left uneval-
uated.

>> Attributes[Function]
{HoldAll, Protected}

HoldAllComplete

HoldAllComplete
is an attribute that includes the effects
of HoldAll and SequenceHold, and also
protects the function from being affected
by the upvalues of any arguments.

HoldAllComplete even prevents upvalues from
being used, and includes SequenceHold.
>> SetAttributes[f, HoldAllComplete

]

>> f[a] ^= 3;

>> f[a]
f [a]

>> f[Sequence[a, b]]

f
[
Sequence [a, b]

]

HoldFirst

HoldFirst
is an attribute specifying that the first ar-
gument of a function should be left un-
evaluated.

>> Attributes[Set]
{HoldFirst, Protected, SequenceHold}

75

HoldRest

HoldRest
is an attribute specifying that all but the
first argument of a function should be left
unevaluated.

>> Attributes[If]
{HoldRest, Protected}

Listable

Listable
is an attribute specifying that a function
should be automatically applied to each
element of a list.

>> SetAttributes[f, Listable]

>> f[{1, 2, 3}, {4, 5, 6}]
{ f [1, 4] , f [2, 5] , f [3, 6]}

>> f[{1, 2, 3}, 4]
{ f [1, 4] , f [2, 4] , f [3, 4]}

>> {{1, 2}, {3, 4}} + {5, 6}
{{6, 7} , {9, 10}}

Locked

Locked
is an attribute that prevents attributes on
a symbol from being modified.

The attributes of Locked symbols cannot be
modified:
>> Attributes[lock] = {Flat, Locked

};

>> SetAttributes[lock, {}]
Symbollockislocked.

>> ClearAttributes[lock, Flat]
Symbollockislocked.

>> Attributes[lock] = {}
Symbollockislocked.

{}

>> Attributes[lock]
{Flat, Locked}

However, their values might be modified (as
long as they are not Protected too):
>> lock = 3

3

NHoldAll

NHoldAll
is an attribute that protects all arguments
of a function from numeric evaluation.

>> N[f[2, 3]]
f [2., 3.]

>> SetAttributes[f, NHoldAll]

>> N[f[2, 3]]
f [2, 3]

NHoldFirst

NHoldFirst
is an attribute that protects the first argu-
ment of a function from numeric evalua-
tion.

NHoldRest

NHoldRest
is an attribute that protects all but the
first argument of a function from numeric
evaluation.

OneIdentity

OneIdentity
is an attribute specifying that f [x] should
be treated as equivalent to x in pattern
matching.

OneIdentity affects pattern matching:
>> SetAttributes[f, OneIdentity]

76

>> a /. f[args___] -> {args}

{a}

It does not affect evaluation:
>> f[a]

f [a]

Orderless

Orderless
is an attribute that can be assigned to a
symbol f to indicate that the elements
ei in expressions of the form f [e1, e2,
...] should automatically be sorted into
canonical order. This property is ac-
counted for in pattern matching.

The leaves of an Orderless function are auto-
matically sorted:
>> SetAttributes[f, Orderless]

>> f[c, a, b, a + b, 3, 1.0]
f [1., 3, a, b, c, a + b]

A symbol with the Orderless attribute repre-
sents a commutative mathematical operation.
>> f[a, b] == f[b, a]

True

Orderless affects pattern matching:
>> SetAttributes[f, Flat]

>> f[a, b, c] /. f[a, c] -> d
f [b, d]

Protect

Protect[s1, s2, ...]
sets the attribute Protected for the sym-
bols si.

Protect[str1, str2, ...]
protects all symbols whose names textu-
ally match stri.

>> A = {1, 2, 3};

>> Protect[A]

>> A[[2]] = 4;
SymbolAisProtected.

>> A
{1, 2, 3}

Protected

Protected
is an attribute that prevents values on a
symbol from being modified.

Values of Protected symbols cannot be modi-
fied:
>> Attributes[p] = {Protected};

>> p = 2;

SymbolpisProtected.

>> f[p] ^= 3;

Tagpin f [p]isProtected.

>> Format[p] = "text";

SymbolpisProtected.

However, attributes might still be set:
>> SetAttributes[p, Flat]

>> Attributes[p]

{Flat, Protected}

Thus, you can easily remove the attribute
Protected:
>> Attributes[p] = {};

>> p = 2
2

You can also use Protect or Unprotect, resp.
>> Protect[p]

>> Attributes[p]

{Protected}

>> Unprotect[p]

If a symbol is Protected and Locked, it can
never be changed again:
>> SetAttributes[p, {Protected,

Locked}]

>> p = 2

SymbolpisProtected.

2

77

>> Unprotect[p]

Symbolpislocked.

ReadProtected

ReadProtected
is an attribute that prevents values on a
symbol from being read.

Values associated with ReadProtected symbols
cannot be seen in Definition:
>> ClearAll[p]

>> p = 3;

>> Definition[p]
p = 3

>> SetAttributes[p, ReadProtected]

>> Definition[p]

Attributes
[
p
]

= {ReadProtected}

SequenceHold

SequenceHold
is an attribute that prevents Sequence ob-
jects from being spliced into a function’s
arguments.

Normally, Sequence will be spliced into a func-
tion:
>> f[Sequence[a, b]]

f [a, b]

It does not for SequenceHold functions:
>> SetAttributes[f, SequenceHold]

>> f[Sequence[a, b]]

f
[
Sequence [a, b]

]
E.g., Set has attribute SequenceHold to allow as-
signment of sequences to variables:
>> s = Sequence[a, b];

>> s
Sequence [a, b]

>> Plus[s]
a + b

SetAttributes

SetAttributes[symbol, attrib]
adds attrib to the list of symbol’s at-
tributes.

>> SetAttributes[f, Flat]

>> Attributes[f]
{Flat}

Multiple attributes can be set at the same time
using lists:
>> SetAttributes[{f, g}, {Flat,

Orderless}]

>> Attributes[g]

{Flat, Orderless}

Unprotect

Unprotect[s1, s2, ...]
removes the attribute Protected for the
symbols si.

Unprotect[str]
unprotects symbols whose names textu-
ally match str.

78

13. Tensors

In mathematics, a tensor is an algebraic object
that describes a (multilinear) relationship be-
tween sets of algebraic objects related to a vector
space. Objects that tensors may map between
include vectors and scalars, and even other ten-
sors.
There are many types of tensors, including
scalars and vectors (which are the simplest ten-

sors), dual vectors, multilinear maps between
vector spaces, and even some operations such
as the dot product. Tensors are defined inde-
pendent of any basis, although they are often re-
ferred to by their components in a basis related
to a particular coordinate system.
Mathics represents tensors of vectors and matri-
ces as lists; tensors of any rank can be handled.

Contents

ArrayDepth 79
ArrayQ 79
DiagonalMatrix 80
Dimensions 80

Dot (.) 80
IdentityMatrix 80
Inner 80
MatrixQ 81

Outer 81
Transpose 82
VectorQ 82

ArrayDepth

ArrayDepth[a]
returns the depth of the non-ragged array
a, defined as Length[Dimensions[a]].

>> ArrayDepth[{{a,b},{c,d}}]
2

>> ArrayDepth[x]
0

ArrayQ

ArrayQ[expr]
tests whether expr is a full array.

ArrayQ[expr, pattern]
also tests whether the array depth of expr
matches pattern.

ArrayQ[expr, pattern, test]
furthermore tests whether test yields
True for all elements of expr. ArrayQ
[expr] is equivalent to ArrayQ[
expr, _, True&].

>> ArrayQ[a]

False

>> ArrayQ[{a}]
True

>> ArrayQ[{{{a}},{{b,c}}}]

False

>> ArrayQ[{{a, b}, {c, d}}, 2,
SymbolQ]

True

DiagonalMatrix

DiagonalMatrix[list]
gives a matrix with the values in list on
its diagonal and zeroes elsewhere.

>> DiagonalMatrix[{1, 2, 3}]

{{1, 0, 0} , {0, 2, 0} , {0, 0, 3}}

79

>> MatrixForm[%] 1 0 0
0 2 0
0 0 3

Dimensions

Dimensions[expr]
returns a list of the dimensions of the ex-
pression expr.

A vector of length 3:
>> Dimensions[{a, b, c}]

{3}

A 3x2 matrix:
>> Dimensions[{{a, b}, {c, d}, {e,

f}}]

{3, 2}

Ragged arrays are not taken into account:
>> Dimensions[{{a, b}, {b, c}, {c,

d, e}}]

{3}

The expression can have any head:
>> Dimensions[f[f[a, b, c]]]

{1, 3}

Dot (.)

Dot[x, y]
x . y

computes the vector dot product or ma-
trix product x . y.

Scalar product of vectors:
>> {a, b, c} . {x, y, z}

ax + by + cz

Product of matrices and vectors:
>> {{a, b}, {c, d}} . {x, y}

{ax + by, cx + dy}

Matrix product:

>> {{a, b}, {c, d}} . {{r, s}, {t,
u}}

{{ar + bt, as + bu} , {cr + dt, cs + du}}

>> a . b
a.b

IdentityMatrix

IdentityMatrix[n]
gives the identity matrix with n rows and
columns.

>> IdentityMatrix[3]

{{1, 0, 0} , {0, 1, 0} , {0, 0, 1}}

Inner

Inner[f , x, y, g]
computes a generalised inner product of
x and y, using a multiplication function f
and an addition function g.

>> Inner[f, {a, b}, {x, y}, g]

g
[

f [a, x] , f
[
b, y

]]
Inner can be used to compute a dot product:
>> Inner[Times, {a, b}, {c, d},

Plus] == {a, b} . {c, d}

True

The inner product of two boolean matrices:
>> Inner[And, {{False, False}, {

False, True}}, {{True, False}, {
True, True}}, Or]

{{False, False} , {True, True}}

Inner works with tensors of any depth:
>> Inner[f, {{{a, b}}, {{c, d}}},

{{1}, {2}}, g]{{{
g
[

f [a, 1] , f [b, 2]
]}}

,{{
g
[

f [c, 1] , f [d, 2]
]}}}

80

MatrixQ

MatrixQ[m]
returns True if m is a list of equal-length
lists.

MatrixQ[m, f]
only returns True if f [x] returns True for
each element x of the matrix m.

>> MatrixQ[{{1, 3}, {4.0, 3/2}},
NumberQ]

True

Outer

Outer[f , x, y]
computes a generalised outer product of
x and y, using the function f in place of
multiplication.

>> Outer[f, {a, b}, {1, 2, 3}]
{{ f [a, 1] , f [a, 2] , f [a, 3]} ,
{ f [b, 1] , f [b, 2] , f [b, 3]}}

Outer product of two matrices:
>> Outer[Times, {{a, b}, {c, d}},

{{1, 2}, {3, 4}}]

{{{{a, 2a} , {3a, 4a}} , {{b,
2b} , {3b, 4b}}} , {{{c, 2c} , {3c,
4c}} , {{d, 2d} , {3d, 4d}}}}

Outer of multiple lists:
>> Outer[f, {a, b}, {x, y, z}, {1,

2}]{{
{ f [a, x, 1] , f [a, x, 2]} ,

{
f
[

a, y, 1
]

, f
[
a, y, 2

]}
, { f [a, z, 1] ,

f [a, z, 2]}
}

,
{
{ f [b, x, 1] , f [

b, x, 2]} ,
{

f
[
b, y, 1

]
, f

[
b, y,

2
]}

, { f [b, z, 1] , f [b, z, 2]}
}}

Arrays can be ragged:
>> Outer[Times, {{1, 2}}, {{a, b},

{c, d, e}}]

{{{{a, b} , {c, d, e}} ,
{{2a, 2b} , {2c, 2d, 2e}}}}

Word combinations:

>> Outer[StringJoin, {"", "re", "un
"}, {"cover", "draw", "wind"},
{"", "ing", "s"}] // InputForm

{{{"cover", "covering", "covers"} ,
{"draw", "drawing", "draws"} ,
{"wind", "winding", "winds"}} ,
{{"recover", "recovering",
"recovers"} , {"redraw",
"redrawing", "redraws"} ,
{"rewind", "rewinding",
"rewinds"}} , {{"uncover",
"uncovering", "uncovers"} ,
{"undraw", "undrawing",
"undraws"} , {"unwind",
"unwinding", "unwinds"}}}

Compositions of trigonometric functions:
>> trigs = Outer[Composition, {Sin,

Cos, Tan}, {ArcSin, ArcCos,
ArcTan}]

{{Composition [Sin, ArcSin] ,
Composition [Sin, ArcCos] ,
Composition [Sin, ArcTan]} ,
{Composition [Cos, ArcSin] ,
Composition [Cos, ArcCos] ,
Composition [Cos, ArcTan]} ,
{Composition [Tan, ArcSin] ,
Composition [Tan, ArcCos] ,
Composition [Tan, ArcTan]}}

Evaluate at 0:
>> Map[#[0] &, trigs, {2}]

{{0, 1, 0} , {1, 0, 1} , {0,
ComplexInfinity, 0}}

Transpose

Tranpose[m]
transposes rows and columns in the ma-
trix m.

>> Transpose[{{1, 2, 3}, {4, 5,
6}}]

{{1, 4} , {2, 5} , {3, 6}}

81

>> MatrixForm[%] 1 4
2 5
3 6

VectorQ

VectorQ[v]
returns True if v is a list of elements
which are not themselves lists.

VectorQ[v, f]
returns True if v is a vector and f [x] re-
turns True for each element x of v.

>> VectorQ[{a, b, c}]
True

82

14. Structural Operations

Contents

Apply (@@) 83
ApplyLevel (@@@) . . . 83
AtomQ 84
BinarySearch 84
ByteCount 84
Depth 84
Flatten 85
FreeQ 85
Head 85

Map (/@) 85
MapAt 86
MapIndexed 87
MapThread 87
Null 87
Operate 87
Order 87
OrderedQ 87
PatternsOrderedQ . . . 88

Scan 88
Sort 88
SortBy 88
SymbolName 88
SymbolQ 89
Symbol 89
Thread 89
Through 89

Apply (@@)

Apply[f , expr]
f @@ expr

replaces the head of expr with f.
Apply[f , expr, levelspec]

applies f on the parts specified by level-
spec.

>> f @@ {1, 2, 3}
f [1, 2, 3]

>> Plus @@ {1, 2, 3}
6

The head of expr need not be List:
>> f @@ (a + b + c)

f [a, b, c]

Apply on level 1:
>> Apply[f, {a + b, g[c, d, e * f],

3}, {1}]{
f [a, b] , f

[
c, d, e f

]
, 3
}

The default level is 0:
>> Apply[f, {a, b, c}, {0}]

f [a, b, c]

Range of levels, including negative level (count-
ing from bottom):

>> Apply[f, {{{{{a}}}}}, {2, -3}]{{
f
[

f
[
{a}

]]}}
Convert all operations to lists:
>> Apply[List, a + b * c ^ e * f[g

], {0, Infinity}]

{a, {b, {g} , {c, e}}}

ApplyLevel (@@@)

ApplyLevel[f , expr]
f @@@ expr

is equivalent to Apply[f , expr, {1}].

>> f @@@ {{a, b}, {c, d}}
{ f [a, b] , f [c, d]}

AtomQ

AtomQ[x]
is true if x is an atom (an object such as
a number or string, which cannot be di-
vided into subexpressions using Part).

>> AtomQ[x]
True

83

>> AtomQ[1.2]
True

>> AtomQ[2 + I]
True

>> AtomQ[2 / 3]
True

>> AtomQ[x + y]

False

BinarySearch

CombinatoricaOld‘BinarySearch[l, k]
searches the list l, which has to be sorted,
for key k and returns its index in l.
If k does not exist in l, BinarySearch
returns (a + b) / 2, where a and b are
the indices between which k would have
to be inserted in order to maintain the
sorting order in l. Please note that k
and the elements in l need to be com-
parable under a strict total order (see
https://en.wikipedia.org/wiki/Total_order).

CombinatoricaOld‘BinarySearch[l, k, f]
the index of $k in the elements of l if f
is applied to the latter prior to compari-
son. Note that f needs to yield a sorted
sequence if applied to the elements of $l.

>> CombinatoricaOld‘BinarySearch
[{3, 4, 10, 100, 123}, 100]

4

>> CombinatoricaOld‘BinarySearch
[{2, 3, 9}, 7] // N

2.5

>> CombinatoricaOld‘BinarySearch
[{2, 7, 9, 10}, 3] // N

1.5

>> CombinatoricaOld‘BinarySearch
[{-10, 5, 8, 10}, -100] // N

0.5

>> CombinatoricaOld‘BinarySearch
[{-10, 5, 8, 10}, 20] // N

4.5

>> CombinatoricaOld‘BinarySearch[{{
a, 1}, {b, 7}}, 7, #[[2]]&]

2

ByteCount

ByteCount[expr]
gives the internal memory space used by
expr, in bytes.

The results may heavily depend on the Python
implementation in use.

Depth

Depth[expr]
gives the depth of expr.

The depth of an expression is defined as one plus
the maximum number of Part indices required
to reach any part of expr, except for heads.
>> Depth[x]

1

>> Depth[x + y]
2

>> Depth[{{{{x}}}}]
5

Complex numbers are atomic, and hence have
depth 1:
>> Depth[1 + 2 I]

1

Depth ignores heads:
>> Depth[f[a, b][c]]

2

Flatten

Flatten[expr]
flattens out nested lists in expr.

Flatten[expr, n]
stops flattening at level n.

Flatten[expr, n, h]
flattens expressions with head h instead
of List.

84

>> Flatten[{{a, b}, {c, {d}, e}, {f
, {g, h}}}]

{a, b, c, d, e, f , g, h}

>> Flatten[{{a, b}, {c, {e}, e}, {f
, {g, h}}}, 1]

{a, b, c, {e} , e, f , {g, h}}

>> Flatten[f[a, f[b, f[c, d]], e],
Infinity, f]

f [a, b, c, d, e]

>> Flatten[{{a, b}, {c, d}}, {{2},
{1}}]

{{a, c} , {b, d}}

>> Flatten[{{a, b}, {c, d}}, {{1,
2}}]

{a, b, c, d}

Flatten also works in irregularly shaped arrays
>> Flatten[{{1, 2, 3}, {4}, {6, 7},

{8, 9, 10}}, {{2}, {1}}]

{{1, 4, 6, 8} , {2, 7, 9} , {3, 10}}

FreeQ

FreeQ[expr, x]
returns True if expr does not contain the
expression x.

>> FreeQ[y, x]
True

>> FreeQ[a+b+c, a+b]
False

>> FreeQ[{1, 2, a^(a+b)}, Plus]
False

>> FreeQ[a+b, x_+y_+z_]
True

>> FreeQ[a+b+c, x_+y_+z_]

False

>> FreeQ[x_+y_+z_][a+b]
True

Head

Head[expr]
returns the head of the expression or
atom expr.

>> Head[a * b]
Times

>> Head[6]
Integer

>> Head[x]
Symbol

Map (/@)

Map[f , expr] or f /@ expr
applies f to each part on the first level of
expr.

Map[f , expr, levelspec]
applies f to each level specified by level-
spec of expr.

>> f /@ {1, 2, 3}
{ f [1] , f [2] , f [3]}

>> #^2& /@ {1, 2, 3, 4}
{1, 4, 9, 16}

Map f on the second level:
>> Map[f, {{a, b}, {c, d, e}}, {2}]

{{ f [a] , f [b]} , { f [c] , f [d] , f [e]}}

Include heads:
>> Map[f, a + b + c, Heads->True]

f [Plus]
[

f [a] , f [b] , f [c]
]

85

MapAt

MapAt[f , expr, n]
applies f to the element at position n in
expr. If n is negative, the position is
counted from the end.

MapAt[f, expr, {i, j ...}]
applies f to the part of expr at position {i,
j, ...}.

MapAt[f ,pos]
represents an operator form of MapAt
that can be applied to an expression.

Map f onto the part at position 2:
>> MapAt[f, {a, b, c, d}, 2]

{a, f [b] , c, d}

Map f onto multiple parts:
>> MapAt[f, {a, b, c, d}, {{1},

{4}}]

{ f [a] , b, c, f [d]}

Map f onto the at the end:
>> MapAt[f, {a, b, c, d}, -1]

{a, b, c, f [d]}

Map f onto an association:
>> MapAt[f, <|"a" -> 1, "b" -> 2, "

c" -> 3, "d" -> 4, "e" -> 5|>,
3]

{a− > 1, b− > 2, c− > f [
3] , d− > 4, e− > 5}

Use negative position in an association:
>> MapAt[f, <|"a" -> 1, "b" -> 2, "

c" -> 3, "d" -> 4|>, -3]

{a− > 1, b− > f [2] , c− > 3, d− > 4}

Use the operator form of MapAt:
>> MapAt[f, 1][{a, b, c, d}]

{ f [a] , b, c, d}

MapIndexed

MapIndexed[f , expr]
applies f to each part on the first level of
expr, including the part positions in the
call to f.

MapIndexed[f , expr, levelspec]
applies f to each level specified by level-
spec of expr.

>> MapIndexed[f, {a, b, c}]{
f
[
a, {1}

]
, f

[
b, {2}

]
, f

[
c, {3}

]}
Include heads (index 0):
>> MapIndexed[f, {a, b, c}, Heads->

True]

f
[
List, {0}

] [
f
[
a, {1}

]
,

f
[
b, {2}

]
, f

[
c, {3}

]]
Map on levels 0 through 1 (outer expression gets
index {}):
>> MapIndexed[f, a + b + c * d, {0,

1}]

f
[

f
[
a, {1}

]
+ f

[
b,

{2}
]

+ f
[
cd, {3}

]
, {}

]
Get the positions of atoms in an expression (con-
vert operations to List first to disable Listable
functions):
>> expr = a + b * f[g] * c ^ e;

>> listified = Apply[List, expr,
{0, Infinity}];

>> MapIndexed[#2 &, listified,
{-1}]

{{1} , {{2, 1} , {{2, 2, 1}} ,
{{2, 3, 1} , {2, 3, 2}}}}

Replace the heads with their positions, too:
>> MapIndexed[#2 &, listified,

{-1}, Heads -> True]

{0}
[
{1} , {2, 0}

[
{2, 1} ,

{2, 2, 0}
[
{2, 2, 1}

]
, {2, 3,

0}
[
{2, 3, 1} , {2, 3, 2}

]]]
The positions are given in the same format as
used by Extract. Thus, mapping Extract on
the indices given by MapIndexed re-constructs
the original expression:

86

>> MapIndexed[Extract[expr, #2] &,
listified, {-1}, Heads -> True]

a + b f
[
g
]

ce

MapThread

’MapThread[f, {{a1, a2, ...}, {b1, b2, ...}, ...}]
returns {f [a1, b1, ...], f [a2,
b2, ...], ...}.

MapThread[f , {expr1, expr2, ...}, n]
applies f at level n.

>> MapThread[f, {{a, b, c}, {1, 2,
3}}]

{ f [a, 1] , f [b, 2] , f [c, 3]}

>> MapThread[f, {{{a, b}, {c, d}},
{{e, f}, {g, h}}}, 2]{{

f [a, e] , f
[
b, f

]}
,{

f
[
c, g

]
, f [d, h]

}}

Null

Null
is the implicit result of expressions that
do not yield a result.

>> FullForm[a:=b]
Null

It is not displayed in StandardForm,
>> a:=b

in contrast to the empty string:
>> ""

Operate

Operate[p, expr]
applies p to the head of expr.

Operate[p, expr, n]
applies p to the nth head of expr.

>> Operate[p, f[a, b]]

p
[

f
]

[a, b]

The default value of n is 1:
>> Operate[p, f[a, b], 1]

p
[

f
]

[a, b]

With n=0, Operate acts like Apply:
>> Operate[p, f[a][b][c], 0]

p
[

f [a] [b] [c]
]

Order

Order[x, y]
returns a number indicating the canoni-
cal ordering of x and y. 1 indicates that x
is before y, -1 that y is before x. 0 indicates
that there is no specific ordering. Uses the
same order as Sort.

>> Order[7, 11]
1

>> Order[100, 10]
−1

>> Order[x, z]
1

>> Order[x, x]
0

OrderedQ

OrderedQ[a, b]
is True if a sorts before b according to
canonical ordering.

>> OrderedQ[a, b]
True

>> OrderedQ[b, a]
False

PatternsOrderedQ

PatternsOrderedQ[patt1, patt2]
returns True if pattern patt1 would be ap-
plied before patt2 according to canonical
pattern ordering.

87

>> PatternsOrderedQ[x__, x_]
False

>> PatternsOrderedQ[x_, x__]
True

>> PatternsOrderedQ[b, a]
True

Scan

Scan[f , expr]
applies f to each element of expr and re-
turns Null.

’Scan[f, expr, levelspec]
applies f to each level specified by level-
spec of expr.

>> Scan[Print, {1, 2, 3}]
1
2
3

Sort

Sort[list]
sorts list (or the leaves of any other ex-
pression) according to canonical order-
ing.

Sort[list, p]
sorts using p to determine the order of
two elements.

>> Sort[{4, 1.0, a, 3+I}]
{1., 3 + I, 4, a}

Sort uses OrderedQ to determine ordering by de-
fault. You can sort patterns according to their
precedence using PatternsOrderedQ:
>> Sort[{items___, item_,

OptionsPattern[], item_symbol,
item_?test}, PatternsOrderedQ]

{item_symbol, item_? test, item_,
items___, OptionsPattern []}

When sorting patterns, values of atoms do not
matter:
>> Sort[{a, b/;t}, PatternsOrderedQ

]

{b/;t, a}

>> Sort[{2+c_, 1+b__},
PatternsOrderedQ]

{2 + c_, 1 + b__}

>> Sort[{x_ + n_*y_, x_ + y_},
PatternsOrderedQ]

{x_ + n_y_, x_ + y_}

SortBy

SortBy[list, f]
sorts list (or the leaves of any other ex-
pression) according to canonical ordering
of the keys that are extracted from the
list’s elements using $f. Chunks of leaves
that appear the same under $f are sorted
according to their natural order (without
applying $f).

SortBy[f]
creates an operator function that, when
applied, sorts by $f.

>> SortBy[{{5, 1}, {10, -1}}, Last]

{{10, − 1} , {5, 1}}

>> SortBy[Total][{{5, 1}, {10,
-9}}]

{{10, − 9} , {5, 1}}

SymbolName

SymbolName[s]
returns the name of the symbol s (without
any leading context name).

>> SymbolName[x] // InputForm
"x"

SymbolQ

SymbolQ[x]
is True if x is a symbol, or False other-
wise.

>> SymbolQ[a]
True

88

>> SymbolQ[1]

False

>> SymbolQ[a + b]

False

Symbol

Symbol
is the head of symbols.

>> Head[x]
Symbol

You can use Symbol to create symbols from
strings:
>> Symbol["x"] + Symbol["x"]

2x

Thread

Thread[f [args]]
threads f over any lists that appear in
args.

Thread[f [args], h]
threads over any parts with head h.

>> Thread[f[{a, b, c}]]
{ f [a] , f [b] , f [c]}

>> Thread[f[{a, b, c}, t]]
{ f [a, t] , f [b, t] , f [c, t]}

>> Thread[f[a + b + c], Plus]
f [a] + f [b] + f [c]

Functions with attribute Listable are automati-
cally threaded over lists:
>> {a, b, c} + {d, e, f} + g

{a + d + g, b + e + g, c + f + g}

Through

Through[p[f][x]]
gives p[f [x]].

>> Through[f[g][x]]

f
[
g [x]

]
>> Through[p[f, g][x]]

p
[

f [x] , g [x]
]

89

15. Drawing Graphics

Contents

AbsoluteThickness . . 90
Arrow 91
Arrowheads 92
Circle 93
Disk 94
EdgeForm 94
FilledCurve 94
FontColor 95

Graphics 95
Large 96
Line 96
Medium 96
Point 97
PointSize 97
Polygon 98
Rectangle 99
RegularPolygon 99

Show 100
Small 100
Text 100
Thick 100
Thickness 101
Thin 101
Tiny 101

AbsoluteThickness

AbsoluteThickness[p]
sets the line thickness for subsequent
graphics primitives to p points.

>> Graphics[Table[{
AbsoluteThickness[t], Line[{{20
t, 10}, {20 t, 80}}], Text[
ToString[t]<>"pt", {20 t, 0}]},
{t, 0, 10}]]

0pt 1pt 2pt 3pt 4pt 5pt 6pt 7pt 8pt 9pt10pt

Arrow

Arrow[{p1, p2}]
represents a line from p1 to p2 that ends
with an arrow at p2.

Arrow[{p1, p2}, s]
represents a line with arrow that keeps a
distance of s from p1 and p2.

Arrow[{point_1, point_2}, {s1, s2}]
represents a line with arrow that keeps a
distance of s1 from p1 and a distance of s2
from p2.

Arrow[{point_1, point_2}, {s1, s2}]
represents a line with arrow that keeps a
distance of s1 from p1 and a distance of s2
from p2.

>> Graphics[Arrow[{{0,0}, {1,1}}]]

90

>> Graphics[{Circle[], Arrow[{{2,
1}, {0, 0}}, 1]}]

Arrows can also be drawn in 3D by giving poing
in three dimensions:
>> Graphics3D[Arrow[{{1, 1, -1},

{2, 2, 0}, {3, 3, -1}, {4, 4,
0}}]]

Keeping distances may happen across multiple
segments:

>> Table[Graphics[{Circle[], Arrow[
Table[{Cos[phi],Sin[phi]},{phi
,0,2*Pi,Pi/2}],{d, d}]}],{d
,0,2,0.5}]

, , , ,

91

Arrowheads

Arrowheads[s]
specifies that Arrow[] draws one arrow of
size s (relative to width of image, defaults
to 0.04).

Arrowheads[{spec1, spec2, ..., specn}]
specifies that Arrow[] draws n arrows as
defined by spec1, spec2, ... specn.

Arrowheads[{{s}}]
specifies that one arrow of size s should
be drawn.

Arrowheads[{{s, pos}}]
specifies that one arrow of size s should
be drawn at position pos (for the arrow to
be on the line, pos has to be between 0, i.e.
the start for the line, and 1, i.e. the end of
the line).

Arrowheads[{{s, pos, g}}]
specifies that one arrow of size s should
be drawn at position pos using Graphics
g.

Arrows on both ends can be achieved using neg-
ative sizes:
>> Graphics[{Circle[],Arrowheads

[{-0.04, 0.04}], Arrow[{{0, 0},
{2, 2}}, {1,1}]}]

You may also specify our own arrow shapes:

>> Graphics[{Circle[], Arrowheads
[{{0.04, 1, Graphics[{Red, Disk
[]}]}}], Arrow[{{0, 0}, {Cos[Pi
/3],Sin[Pi/3]}}]}]

>> Graphics[{Arrowheads[Table
[{0.04, i/10, Graphics[Disk
[]]},{i,1,10}]], Arrow[{{0, 0},
{6, 5}, {1, -3}, {-2, 2}}]}]

Circle

Circle[{cx, cy}, r]
draws a circle with center (cx, cy) and
radius r.

Circle[{cx, cy}, {rx, ry}]
draws an ellipse.

Circle[{cx, cy}]
chooses radius 1.

Circle[]
chooses center (0, 0) and radius 1.

92

>> Graphics[{Red, Circle[{0, 0},
{2, 1}]}]

>> Graphics[{Circle[], Disk[{0, 0},
{1, 1}, {0, 2.1}]}]

Target practice:
>> Graphics[Circle[], Axes-> True]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

Disk

Disk[{cx, cy}, r]
fills a circle with center (cx, cy) and ra-
dius r.

Disk[{cx, cy}, {rx, ry}]
fills an ellipse.

Disk[{cx, cy}]
chooses radius 1.

Disk[]
chooses center (0, 0) and radius 1.

Disk[{x, y}, ..., {t1, t2}]
is a sector from angle t1 to t2.

>> Graphics[{Blue, Disk[{0, 0}, {2,
1}]}]

The outer border can be drawn using EdgeForm:
>> Graphics[{EdgeForm[Black], Red,

Disk[]}]

Disk can also draw sectors of circles and ellipses

93

>> Graphics[Disk[{0, 0}, 1, {Pi /
3, 2 Pi / 3}]]

>> Graphics[{Blue, Disk[{0, 0}, {1,
2}, {Pi / 3, 5 Pi / 3}]}]

EdgeForm
>> Graphics[{EdgeForm[{Thick, Green

}], Disk[]}]

>> Graphics[{Style[Disk[],EdgeForm
[{Thick,Red}]], Circle[{1,1}]}]

FilledCurve

FilledCurve[{segment1, segment2 ...}]
represents a filled curve.

>> Graphics[FilledCurve[{Line[{{0,
0}, {1, 1}, {2, 0}}]}]]

>> Graphics[FilledCurve[{
BezierCurve[{{0, 0}, {1, 1}, {2,
0}}], Line[{{3, 0}, {0, 2}}]}]]

94

FontColor

FontColor
is an option for Style to set the font color.

Graphics

Graphics[primitives, options]
represents a graphic.

Options include:
• Axes
• TicksStyle
• AxesStyle
• LabelStyle
• AspectRatio
• PlotRange
• PlotRangePadding
• ImageSize
• Background

>> Graphics[{Blue, Line[{{0,0},
{1,1}}]}]

Graphics supports PlotRange:

>> Graphics[{Rectangle[{1, 1}]},
Axes -> True, PlotRange -> {{-2,
1.5}, {-1, 1.5}}]

−2.0−1.5−1.0−0.5 0.5 1.0 1.5

−1.0

−0.5

0.5

1.0

1.5

>> Graphics[{Rectangle[],Red,Disk
[{1,0}]},PlotRange
->{{0,1},{0,1}}]

Graphics produces GraphicsBox boxes:
>> Graphics[Rectangle[]] // ToBoxes

// Head

GraphicsBox

In TeXForm, Graphics produces Asymptote fig-
ures:
>> Graphics[Circle[]] // TeXForm

\begin{asy}
usepackage("amsmath");
size(5.8556cm, 5.8333cm);
draw(ellipse((175,175),175,175),
rgb(0, 0, 0)+linewidth(0.66667));
clip(box((-0.33333,0.33333),
(350.33,349.67)));
\end{asy}

95

Large

ImageSize -> Large
produces a large image.

Line

Line[{point_1, point_2 ...}]
represents the line primitive.

Line[{{p_11, p_12, ...}, {p_21, p_22,
...}, ...}]

represents a number of line primitives.

>> Graphics[Line
[{{0,1},{0,0},{1,0},{1,1}}]]

>> Graphics3D[Line
[{{0,0,0},{0,1,1},{1,0,0}}]]

Medium

ImageSize -> Medium
produces a medium-sized image.

Point

Point[{point_1, point_2 ...}]
represents the point primitive.

Point[{{p_11, p_12, ...}, {p_21, p_22,
...}, ...}]

represents a number of point primitives.

Points are rendered if possible as circular re-
gions. Their diameters can be specified using
PointSize.
Points can be specified as {x, y}:
>> Graphics[Point[{0, 0}]]

>> Graphics[Point[Table[{Sin[t],
Cos[t]}, {t, 0, 2. Pi, Pi /
15.}]]]

or as {x, y, z}:

96

>> Graphics3D[{Orange, PointSize
[0.05], Point[Table[{Sin[t], Cos
[t], 0}, {t, 0, 2 Pi, Pi /
15.}]]}]

PointSize

PointSize[t]
sets the diameter of points to t, which is
relative to the overall width.

PointSize can be used for both two- and three-

dimensional graphics. The initial default point-
size is 0.008 for two-dimensional graphics and
0.01 for three-dimensional graphics.
>> Table[Graphics[{PointSize[r],

Point[{0, 0}]}], {r, {0.02,
0.05, 0.1, 0.3}}]

, , ,

>> Table[Graphics3D[{PointSize[r],
Point[{0, 0, 0}]}], {r, {0.05,
0.1, 0.8}}]

, ,

Polygon

Polygon[{point_1, point_2 ...}]
represents the filled polygon primitive.

Polygon[{{p_11, p_12, ...}, {p_21,
p_22, ...}, ...}]

represents a number of filled polygon
primitives.

A Right Triangle:

97

>> Graphics[Polygon
[{{1,0},{0,0},{0,1}}]]

Notice that there is a line connecting from the
last point to the first one.
A point is an element of the polygon if a ray from
the point in any direction in the plane crosses
the boundary line segments an odd number of
times.
>> Graphics[Polygon

[{{150,0},{121,90},{198,35},{102,35},{179,90}}]]

>> Graphics3D[Polygon
[{{0,0,0},{0,1,1},{1,0,0}}]]

Rectangle

Rectangle[{xmin, ymin}]
represents a unit square with bottom-left
corner at {xmin, ymin}.

’Rectangle[{xmin, ymin}, {xmax, ymax}]
is a rectange extending from {xmin, ymin}
to {xmax, ymax}.

>> Graphics[Rectangle[]]

98

>> Graphics[{Blue, Rectangle[{0.5,
0}], Orange, Rectangle[{0,
0.5}]}]

RegularPolygon

RegularPolygon[n]
gives the regular polygon with n edges.

RegularPolygon[r, n]
gives the regular polygon with n edges
and radius r.

RegularPolygon[{r, phi}, n]
gives the regular polygon with radius r
with one vertex drawn at angle phi.

RegularPolygon[{$x, $y}, r, n]
gives the regular polygon centered at the
position {$x, $y}.

>> Graphics[RegularPolygon[5]]

>> Graphics[{Yellow, Rectangle[],
Orange, RegularPolygon[{1, 1},
{0.25, 0}, 3]}]

Show

Show[graphics, options]
shows a list of graphics with the specified
options added.

99

>> Show[{Plot[x, {x, 0, 10}],
ListPlot[{1,2,3}]}]

2 4 6 8 10

2

4

6

8

10

, 1.5 2.0 2.5 3.0

1.5

2.0

2.5

3.0

, $OptionSyntax

− > Ignore, AspectRatio
− > Automatic, Axes
− > False, AxesStyle
− > {} , Background
− > Automatic, ImageSize
− > Automatic, LabelStyle
− > {} , PlotRange
− > Automatic, PlotRangePadding

− > Automatic, TicksStyle− > {}

Small

ImageSize -> Small
produces a small image.

Text

Text["text", {x, y}]
draws text centered on position {x, y}.

>> Graphics[{Text["First", {0, 0}],
Text["Second", {1, 1}]}, Axes->

True, PlotRange->{{-2, 2}, {-2,
2}}]

First

Second

−2 −1 1 2

−2

−1

1

2

Thick

Thick
sets the line width for subsequent graph-
ics primitives to 2pt.

Thickness

Thickness[t]
sets the line thickness for subsequent
graphics primitives to t times the size of
the plot area.

100

>> Graphics[{Thickness[0.2], Line
[{{0, 0}, {0, 5}}]}, Axes->True,
PlotRange->{{-5, 5}, {-5, 5}}]

−4 −2 2 4

−4

−2

2

4

Thin

Thin
sets the line width for subsequent graph-
ics primitives to 0.5pt.

Tiny

ImageSize -> Tiny
produces a tiny image.

101

16. Strings and Characters - Miscellaneous

Contents

Alphabet 102
$CharacterEncoding . . 102
HexidecimalCharacter . 102
LetterNumber 103
NumberString 103
RemoveDiacritics . . . 103

StringContainsQ . . . 103
StringQ 104
StringRepeat 104
String 104
$SystemCharacterEn-

coding 104

ToExpression 104
ToString 105
Transliterate 105
Whitespace 105

Alphabet

Alphabet[]
gives the list of lowercase letters a-z in the
English alphabet .

Alphabet[type]
gives the alphabet for the language or
class type.

>> Alphabet[]

{a, b, c, d, e, f, g, h, i, j, k, l, m,
n, o, p, q, r, s, t, u, v, w, x, y, z}

>> Alphabet["German"]

{a, b, c, d, e, f, g, h, i, j, k, l, m,
n, o, p, q, r, s, t, u, v, w, x, y, z}

$CharacterEncoding

CharacterEncoding
specifies the default character encoding
to use if no other encoding is specified.

HexidecimalCharacter

HexidecimalCharacter
represents the characters 0-9, a-f and A-F.

>> StringMatchQ[#,
HexidecimalCharacter] & /@ {"a",
"1", "A", "x", "H", " ", "."}

{True, True, True, False,
False, False, False}

LetterNumber

LetterNumber[c]
returns the position of the character c in
the English alphabet.

LetterNumber[‘‘string’]’
returns a list of the positions of characters
in string.

LetterNumber[‘‘string’,’ alpha]
returns a list of the positions of characters
in string, regarding the alphabet alpha.

>> LetterNumber["b"]
2

LetterNumber also works with uppercase char-
acters
>> LetterNumber["B"]

2

>> LetterNumber["ss2!"]
{19, 19, 0, 0}

Get positions of each of the letters in a string:
>> LetterNumber[Characters["Peccary

"]]

{16, 5, 3, 3, 1, 18, 25}

102

>> LetterNumber[{"P", "Pe", "P1", "
eck"}]

{16, {16, 5} , {16, 0} , {5, 3, 11}}

>> LetterNumber["\[Beta]", "Greek"]
2

NumberString

NumberString
represents the characters in a number.

>> StringMatchQ["1234",
NumberString]

True

>> StringMatchQ["1234.5",
NumberString]

True

>> StringMatchQ["1.2‘20",
NumberString]

False

RemoveDiacritics

RemoveDiacritics[s]
returns a version of s with all diacritics re-
moved.

>> RemoveDiacritics["en prononçant
pêcher et pécher"]

en prononcant pecher et pecher

>> RemoveDiacritics["piñata"]
pinata

StringContainsQ

StringContainsQ["string", patt]
returns True if any part of string matches
patt, and returns False otherwise.

StringContainsQ[{‘‘s1’, “s2”, ...},
patt]’

returns the list of results for each element
of string list.

StringContainsQ[patt]
represents an operator form of String-
ContainsQ that can be applied to an ex-
pression.

>> StringContainsQ["mathics", "m" ~
~__ ~~"s"]

True

>> StringContainsQ["mathics", "a" ~
~__ ~~"m"]

False

>> StringContainsQ["Mathics", "MA"
, IgnoreCase -> True]

True

>> StringContainsQ[{"g", "a", "laxy
", "universe", "sun"}, "u"]

{False, False, False, True, True}

>> StringContainsQ["e" ~~___ ~~"u"]
/@ {"The Sun", "Mercury", "

Venus", "Earth", "Mars", "
Jupiter", "Saturn", "Uranus", "
Neptune"}

{True, True, True, False, False,
False, False, False, True}

StringQ

StringQ[expr]
returns True if expr is a String, or False
otherwise.

>> StringQ["abc"]
True

>> StringQ[1.5]

False

103

>> Select[{"12", 1, 3, 5, "yz", x,
y}, StringQ]

{12, yz}

StringRepeat

StringRepeat["string", n]
gives string repeated n times.

StringRepeat["string", n, max]
gives string repeated n times, but not
more than max characters.

>> StringRepeat["abc", 3]

abcabcabc

>> StringRepeat["abc", 10, 7]

abcabca

String

String
is the head of strings.

>> Head["abc"]
String

>> "abc"
abc

Use InputForm to display quotes around strings:
>> InputForm["abc"]

"abc"

FullForm also displays quotes:
>> FullForm["abc" + 2]

Plus [2, "abc"]

$SystemCharacterEncoding

$SystemCharacterEncoding

ToExpression

ToExpression[input]
inteprets a given string as Mathics input.

ToExpression[input, form]
reads the given input in the specified
form.

ToExpression[input, form, h]
applies the head h to the expression be-
fore evaluating it.

>> ToExpression["1 + 2"]
3

>> ToExpression["{2, 3, 1}",
InputForm, Max]

3

>> ToExpression["2 3", InputForm]
6

Note that newlines are like semicolons, not
blanks. So so the return value is the second-line
value.
>> ToExpression["2\[NewLine]3"]

3

ToString

ToString[expr]
returns a string representation of expr.

ToString[expr, form]
returns a string representation of expr in
the form form.

>> ToString[2]
2

>> ToString[2] // InputForm
"2"

>> ToString[a+b]

a + b

>> "U" <> 2
Stringexpected.

U<>2

>> "U" <> ToString[2]
U2

104

>> ToString[Integrate[f[x],x],
TeXForm]

\int f\left[x\right] \, dx

Transliterate

Transliterate[s]
transliterates a text in some script into an
ASCII string.

ASCII translateration examples can be found in:
• https://en.wikipedia.org/wiki/

Iliad,
• https://en.wikipedia.org/wiki/

Russian_language, and
• https://en.wikipedia.org/wiki/

Hiragana

Whitespace

Whitespace
represents a sequence of whitespace char-
acters.

>> StringMatchQ["\r \n", Whitespace
]

True

>> StringSplit["a \n b \r\n c d",
Whitespace]

{a, b, c, d}

>> StringReplace[" this has leading
and trailing whitespace \n ", (

StartOfString ~~Whitespace)| (
Whitespace ~~EndOfString)-> ""]
<> " removed" // FullForm

"this has leading and trailing
whitespace removed"

105

https://en.wikipedia.org/wiki/Iliad,
https://en.wikipedia.org/wiki/Iliad,
https://en.wikipedia.org/wiki/Russian_language
https://en.wikipedia.org/wiki/Russian_language
https://en.wikipedia.org/wiki/Hiragana
https://en.wikipedia.org/wiki/Hiragana

17. Mathematical Optimization

Mathematical optimization is the selection of a
best element, with regard to some criterion, from
some set of available alternatives.
Optimization problems of sorts arise in all quan-
titative disciplines from computer science and
engineering to operations research and eco-

nomics, and the development of solution meth-
ods has been of interest in mathematics for cen-
turies.
We intend to provide local and global optimiza-
tion techniques, both numeric and symbolic.

Contents

Maximize 106
Minimize 106

Maximize

Maximize[f , x]
compute the maximum of f respect x that
change between a and b

>> Maximize[-2 x^2 - 3 x + 5, x]{{
49
8

,
{

x− > −3
4

}}}
#» Maximize[1 - (x y - 3)∧2, {x, y}] = {{1, {x -> 3, y
-> 1}}}
#» Maximize[{x - 2 y, x∧2 + y∧2 <= 1}, {x, y}] =
{{Sqrt[5], {x -> Sqrt[5] / 5, y -> -2 Sqrt[5] / 5}}}

Minimize

Minimize[f , x]
compute the minimum of f respect x that
change between a and b

>> Minimize[2 x^2 - 3 x + 5, x]{{
31
8

,
{

x− >
3
4

}}}
#» Minimize[(x y - 3)∧2 + 1, {x, y}] = {{1, {x -> 3,
y -> 1}}}
#» Minimize[{x - 2 y, x∧2 + y∧2 <= 1}, {x, y}] =
{{-Sqrt[5], {x -> -Sqrt[5] / 5, y -> 2 Sqrt[5] / 5}}}

106

18. Drawing Options and Option Values
The various common Plot and Graphics options, along with the meaning of specific option values are
described here.

Contents

Automatic 107
Axes 107
Axis 108
Bottom 108
ChartLabels 108

ChartLegends 108
Filling 108
Full 108
ImageSize 108
Joined 109
MaxRecursion 109

Mesh 110
PlotPoints 110
PlotRange 110
TicksStyle 111
Top 111

Automatic

Automatic
is used to specify an automatically com-
puted option value.

Automatic is the default for PlotRange,
ImageSize, and other graphical options:
>> Cases[Options[Plot], HoldPattern

[_ :> Automatic]]

{Background:>Automatic,
Exclusions:>Automatic,
ImageSize:>Automatic,
MaxRecursion:>Automatic,
PlotRange:>Automatic,
PlotRangePadding:>Automatic}

Axes

Axes
is an option for charting and graph-
ics functions that specifies whether axes
should be drawn.

• Axes->True draws all axes.
• Axes->False draws no axes.
• Axes->{False,True} draws an axis y but

no x axis in two dimensions.

>> Graphics[Circle[], Axes -> True]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

Axis

Axis
is a possible value for the Filling option.

>> ListLinePlot[Table[Sin[x], {x,
-5, 5, 0.2}], Filling->Axis]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

107

Bottom

Bottom
is a possible value for the Filling option.

>> ListLinePlot[Table[Sin[x], {x,
-5, 5, 0.2}], Filling->Bottom]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

ChartLabels

ChartLabels
is a charting option that specifies what la-
bels should be used for chart elements.

>> PieChart[{30, 20, 10},
ChartLabels -> {Dogs, Cats, Fish
}]

Dogs

Cats
Fish

ChartLegends

ChartLegends
is a charting option.

Filling

Filling Top |Bottom|Axis
is a an option to Plot to specify what fill-
ing to add under point, curves, and sur-
faces

>> ListLinePlot[Table[Sin[x], {x,
-5, 5, 0.2}], Filling->Axis]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

Full

Full
is a possible value for the Mesh and
PlotRange options.

ImageSize

ImageSize
is an option that specifies the overall size
of an image to display.

Specifications for both width and height can be
any of the following:

Automatic
determined by location or other dimen-
sion (default)

Tiny, Small, Medium, Large
pre defined absolute sizes

>> Plot[Sin[x], {x, 0, 10},
ImageSize -> Small]

2 4 6 8 10−1.0
−0.5

0.5
1.0

108

Joined

Joined boolean
is an option for Plot that gives whether
to join points to make lines.

>> ListPlot[Table[n ^ 2, {n, 10}],
Joined->True]

4 6 8 10

20

40

60

80

100

MaxRecursion

MaxRecursion
is an option for functions like NIntegrate
and Plot that specifies how many recur-
sive subdivisions can be made.

>> NIntegrate[Exp[-10^8 x^2], {x,
-1, 1}, MaxRecursion -> 10]

1.97519 × 10−207

Mesh

Mesh
is a charting option, such as for Plot,
BarChart, PieChart, etc. that specifies
the mesh to be drawn. The default is
Mesh->None.

>> Plot[Sin[Cos[x^2]],{x,-4,4},Mesh
->All]

−4 −2 2 4

−0.5

0.5

>> Plot[Sin[x], {x,0,4 Pi}, Mesh->
Full]

2 4 6 8 10 12

−1.0

−0.5

0.5

1.0

>> DensityPlot[Sin[x y], {x, -2,
2}, {y, -2, 2}, Mesh->Full]

109

>> Plot3D[Sin[x y], {x, -2, 2}, {y,
-2, 2}, Mesh->Full]

PlotPoints

PlotPoints n
A number specifies how many initial
sample points to use.

>> Plot[Sin[Cos[x^2]],{x,-4,4},
PlotPoints->22]

−4 −2 2 4

−0.5

0.5

PlotRange

PlotRange
is a charting option, such as for Plot,
BarChart, PieChart, etc. that gives the
range of coordinates to include in a plot.

• All all points are included.
• Automatic - outlying points are dropped.
• max - explicit limit for each function.
• {min, max} - explicit limits for y (2D), z (3D),

or array values.
• {{x_min, x_max}, {{$y_min}, {$y_max}} - ex-

plit limits for x and y.

>> Plot[Sin[Cos[x^2]],{x,-4,4},
PlotRange -> All]

−4 −2 2 4

−0.5

0.5

>> Graphics[Disk[], PlotRange ->
{{-.5, .5}, {0, 1.5}}]

TicksStyle

TicksStyle
is an option for graphics functions which
specifies how ticks should be rendered.

• TicksStyle gives styles for both tick marks
and tick labels.

• TicksStyle can be used in both two and
three-dimensional graphics.

• TicksStyle->list specifies the colors of each
of the axes.

110

>> Graphics[Circle[], Axes-> True,
TicksStyle -> {Blue, Red}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

Top

Top
is a possible value for the Filling option.

>> ListLinePlot[Table[Sin[x], {x,
-5, 5, 0.2}], Filling->Axis|Top|
Bottom]

10 20 30 40 50

−1.0

−0.5

0.5

1.0

111

19. Physical and Chemical data

Contents

ElementData 113

ElementData

ElementData["name‘‘,”property"]
gives the value of the property for the
chemical specified by name.

ElementData[n, "property"]
gives the value of the property for the nth
chemical element.

>> ElementData[74]
Tungsten

>> ElementData["He", "
AbsoluteBoilingPoint"]

4.22

>> ElementData["Carbon", "
IonizationEnergies"]

{1 086.5, 2 352.6, 4 620.5
, 6 222.7, 37 831, 47 277.}

>> ElementData[16, "
ElectronConfigurationString"]

[Ne] 3s2 3p4

>> ElementData[73, "
ElectronConfiguration"]

{{2} , {2, 6} , {2, 6, 10} , {2,
6, 10, 14} , {2, 6, 3} , {2}}

The number of known elements:
>> Length[ElementData[All]]

118

Some properties are not appropriate for certain
elements:
>> ElementData["He", "

ElectroNegativity"]

Missing
[
NotApplicable

]

Some data is missing:
>> ElementData["Tc", "SpecificHeat

"]

Missing [NotAvailable]

All the known properties:
>> ElementData["Properties"]

{Abbreviation,
AbsoluteBoilingPoint,
AbsoluteMeltingPoint,
AtomicNumber, AtomicRadius,
AtomicWeight, Block, BoilingPoint,
BrinellHardness, BulkModulus,
CovalentRadius, CrustAbundance,
Density, DiscoveryYear,
ElectroNegativity, ElectronAffinity,
ElectronConfiguration,
ElectronConfigurationString,
ElectronShellConfiguration,
FusionHeat, Group,
IonizationEnergies, LiquidDensity,
MeltingPoint, MohsHardness,
Name, Period, PoissonRatio,
Series, ShearModulus,
SpecificHeat, StandardName,
ThermalConductivity,
VanDerWaalsRadius,
VaporizationHeat,
VickersHardness, YoungModulus}

112

>> ListPlot[Table[ElementData[z, "
AtomicWeight"], {z, 118}]]

20 40 60 80 100 120

50

100

150

200

250

300

113

20. List Functions - Miscellaneous

Contents

All 114
ByteArray 114
CentralMoment 114
ClusteringComponents 115
ContainsOnly 115
Delete 116
DisjointQ 116
Failure 116
FindClusters 117
Fold 117
FoldList 117
Insert 117

IntersectingQ 117
Join 117
Key 117
LeafCount 118
Level 118
LevelQ 118
List 119
ListQ 119
Nearest 119
None 119
NotListQ 119
PadLeft 120
PadRight 120

Position 121
Quartiles 121
RankedMax 121
RankedMin 121
Split 121
SplitBy 122
SubsetQ 122
TakeLargest 122
TakeLargestBy 122
TakeSmallest 122
TakeSmallestBy 123
UnitVector 123

All

All
is a possible option value for Span,
Quiet, Part and related functions. All
specifies all parts at a particular level.

ByteArray

ByteArray[{b_1, b_2, ...}]
Represents a sequence of Bytes b_1, b_2,
...

ByteArray[‘‘string’]’
Constructs a byte array where bytes
comes from decode a b64 encoded String

>> A=ByteArray[{1, 25, 3}]

ByteArray ["ARkD"]

>> A[[2]]
25

>> Normal[A]
{1, 25, 3}

>> ToString[A]

ByteArray["ARkD"]

>> ByteArray["ARkD"]

ByteArray ["ARkD"]

>> B=ByteArray["asy"]

The f irstargumentinBytearray[asy]shouldbeaB64encondedstringoravectoro f integers.

$Failed

CentralMoment

CentralMoment[list, r]
gives the the rth central moment (i.e. the
rth moment about the mean) of list.

>> CentralMoment[{1.1, 1.2, 1.4,
2.1, 2.4}, 4]

0.100845

114

ClusteringComponents

ClusteringComponents[list]
forms clusters from list and returns a list
of cluster indices, in which each element
shows the index of the cluster in which
the corresponding element in list ended
up.

ClusteringComponents[list, k]
forms k clusters from list and returns a list
of cluster indices, in which each element
shows the index of the cluster in which
the corresponding element in list ended
up.

For more detailed documentation regarding op-
tions and behavior, see FindClusters[].
>> ClusteringComponents[{1, 2, 3,

1, 2, 10, 100}]

{1, 1, 1, 1, 1, 1, 2}

>> ClusteringComponents[{10, 100,
20}, Method -> "KMeans"]

{1, 0, 1}

ContainsOnly

ContainsOnly[list1, list2]
yields True if list1 contains only elements
that appear in list2.

>> ContainsOnly[{b, a, a}, {a, b, c
}]

True

The first list contains elements not present in the
second list:
>> ContainsOnly[{b, a, d}, {a, b, c

}]

False

>> ContainsOnly[{}, {a, b, c}]
True

Use Equal as the comparison function to have
numerical tolerance:
>> ContainsOnly[{a, 1.0}, {1, a, b

}, {SameTest -> Equal}]

True

Delete

Delete[expr, i]
deletes the element at position i in expr.
The position is counted from the end if i
is negative.

Delete[expr, {m, n, ...}]
deletes the element at position {m, n, ...}.

Delete[expr, {{m1, n1, ...}, {m2,
n2, ...}, ...}]

deletes the elements at several positions.

Delete the element at position 3:
>> Delete[{a, b, c, d}, 3]

{a, b, d}

Delete at position 2 from the end:
>> Delete[{a, b, c, d}, -2]

{a, b, d}

Delete at positions 1 and 3:
>> Delete[{a, b, c, d}, {{1}, {3}}]

{b, d}

Delete in a 2D array:
>> Delete[{{a, b}, {c, d}}, {2, 1}]

{{a, b} , {d}}

Deleting the head of a whole expression gives a
Sequence object:
>> Delete[{a, b, c}, 0]

Sequence [a, b, c]

Delete in an expression with any head:
>> Delete[f[a, b, c, d], 3]

f [a, b, d]

Delete a head to splice in its arguments:
>> Delete[f[a, b, u + v, c], {3,

0}]

f [a, b, u, v, c]

>> Delete[{a, b, c}, 0]
Sequence [a, b, c]

Delete without the position:
>> Delete[{a, b, c, d}]

Deletecalledwith1argument; 2argumentsareexpected.

Delete
[
{a, b, c, d}

]
Delete with many arguments:

115

>> Delete[{a, b, c, d}, 1, 2]
Deletecalledwith3arguments; 2argumentsareexpected.

Delete
[
{a, b, c, d} , 1, 2

]
Delete the element out of range:
>> Delete[{a, b, c, d}, 5]

Part{5}o f {a, b, c, d}doesnotexist.

Delete
[
{a, b, c, d} , 5

]
Delete the position not integer:
>> Delete[{a, b, c, d}, {1, n}]

Positionspeci f icationnin{a,
b, c, d}isnotamachine
− sizedintegeroralisto f machine
− sizedintegers.

Delete
[
{a, b, c, d} , {1, n}

]

DisjointQ

DisjointQ[a, b]
gives True if $a and $b are disjoint, or
False if $a and $b have any common el-
ements.

Failure

Failure[tag, assoc]
represents a failure of a type indicated by
tag, with details given by the association
assoc.

FindClusters

FindClusters[list]
returns a list of clusters formed from the
elements of list. The number of cluster is
determined automatically.

FindClusters[list, k]
returns a list of k clusters formed from the
elements of list.

>> FindClusters[{1, 2, 20, 10, 11,
40, 19, 42}]

{{1, 2, 20, 10, 11, 19} , {40, 42}}

>> FindClusters[{25, 100, 17, 20}]
{{25, 17, 20} , {100}}

>> FindClusters[{3, 6, 1, 100, 20,
5, 25, 17, -10, 2}]

{{3, 6, 1, 5, − 10, 2} ,
{100} , {20, 25, 17}}

>> FindClusters[{1, 2, 10, 11, 20,
21}]

{{1, 2} , {10, 11} , {20, 21}}

>> FindClusters[{1, 2, 10, 11, 20,
21}, 2]

{{1, 2, 10, 11} , {20, 21}}

>> FindClusters[{1 -> a, 2 -> b, 10
-> c}]

{{a, b} , {c}}

>> FindClusters[{1, 2, 5} -> {a, b,
c}]

{{a, b} , {c}}

>> FindClusters[{1, 2, 3, 1, 2, 10,
100}, Method -> "Agglomerate"]

{{1, 2, 3, 1, 2, 10} , {100}}

>> FindClusters[{1, 2, 3, 10, 17,
18}, Method -> "Agglomerate"]

{{1, 2, 3} , {10} , {17, 18}}

>> FindClusters[{{1}, {5, 6}, {7},
{2, 4}}, DistanceFunction -> (
Abs[Length[#1] - Length[#2]]&)]

{{{1} , {7}} , {{5, 6} , {2, 4}}}

>> FindClusters[{"meep", "heap", "
deep", "weep", "sheep", "leap",
"keep"}, 3]

{{meep, deep, weep, keep} ,
{heap, leap} , {sheep}}

FindClusters’ automatic distance function detec-
tion supports scalars, numeric tensors, boolean
vectors and strings.
The Method option must be either “Agglomer-
ate” or “Optimize”. If not specified, it defaults to
“Optimize”. Note that the Agglomerate and Op-
timize methods usually produce different clus-
terings.
The runtime of the Agglomerate method is

116

quadratic in the number of clustered points n,
builds the clustering from the bottom up, and is
exact (no element of randomness). The Optimize
method’s runtime is linear in n, Optimize builds
the clustering from top down, and uses random
sampling.

Fold

Fold[f , x, list]
returns the result of iteratively applying
the binary operator f to each element of
list, starting with x.

Fold[f , list]
is equivalent to Fold[f , First[list],
Rest[list]].

>> Fold[Plus, 5, {1, 1, 1}]
8

>> Fold[f, 5, {1, 2, 3}]

f
[

f
[

f [5, 1] , 2
]

, 3
]

FoldList

FoldList[f , x, list]
returns a list starting with x, where each
element is the result of applying the bi-
nary operator f to the previous result and
the next element of list.

FoldList[f , list]
is equivalent to FoldList[f , First[
list], Rest[list]].

>> FoldList[f, x, {1, 2, 3}]{
x, f [x, 1] , f

[
f [x, 1] ,

2
]

, f
[

f
[

f [x, 1] , 2
]

, 3
]}

>> FoldList[Times, {1, 2, 3}]
{1, 2, 6}

Insert

Insert[list, elem, n]
inserts elem at position n in list. When n is
negative, the position is counted from the
end.

>> Insert[{a,b,c,d,e}, x, 3]
{a, b, x, c, d, e}

>> Insert[{a,b,c,d,e}, x, -2]
{a, b, c, d, x, e}

IntersectingQ

IntersectingQ[a, b]
gives True if there are any common ele-
ments in $a and $b, or False if $a and $b
are disjoint.

Join

Join[l1, l2]
concatenates the lists l1 and l2.

Join concatenates lists:
>> Join[{a, b}, {c, d, e}]

{a, b, c, d, e}

>> Join[{{a, b}, {c, d}}, {{1, 2},
{3, 4}}]

{{a, b} , {c, d} , {1, 2} , {3, 4}}

The concatenated expressions may have any
head:
>> Join[a + b, c + d, e + f]

a + b + c + d + e + f

However, it must be the same for all expressions:
>> Join[a + b, c * d]

HeadsPlusandTimesareexpectedtobethesame.

Join [a + b, cd]

Key

Key[key]
represents a key used to access a value in
an association.

Key[key][assoc]

117

LeafCount

LeafCount[expr]
returns the total number of indivisible
subexpressions in expr.

>> LeafCount[1 + x + y^a]
6

>> LeafCount[f[x, y]]
3

>> LeafCount[{1 / 3, 1 + I}]
7

>> LeafCount[Sqrt[2]]
5

>> LeafCount[100!]
1

Level

Level[expr, levelspec]
gives a list of all subexpressions of expr at
the level(s) specified by levelspec.

Level uses standard level specifications:

n
levels 1 through n

Infinity
all levels from level 1

{n}
level n only

{m, n}
levels m through n

Level 0 corresponds to the whole expression.
A negative level -n consists of parts with depth
n.
Level -1 is the set of atoms in an expression:
>> Level[a + b ^ 3 * f[2 x ^ 2],

{-1}]

{a, b, 3, 2, x, 2}

>> Level[{{{{a}}}}, 3]
{{a} , {{a}} , {{{a}}}}

>> Level[{{{{a}}}}, -4]
{{{{a}}}}

>> Level[{{{{a}}}}, -5]
{}

>> Level[h0[h1[h2[h3[a]]]], {0,
-1}]

{a, h3 [a] , h2 [h3 [a]] , h1 [h2 [
h3 [a]]] , h0 [h1 [h2 [h3 [a]]]]}

Use the option Heads -> True to include heads:
>> Level[{{{{a}}}}, 3, Heads ->

True]

{List, List, List, {a} , {{a}} , {{{a}}}}

>> Level[x^2 + y^3, 3, Heads ->
True]{

Plus, Power, x, 2, x2, Power, y, 3, y3
}

>> Level[a ^ 2 + 2 * b, {-1}, Heads
-> True]

{Plus, Power, a, 2, Times, 2, b}

>> Level[f[g[h]][x], {-1}, Heads ->
True]

{ f , g, h, x}

>> Level[f[g[h]][x], {-2, -1},
Heads -> True]{

f , g, h, g [h] , x, f
[
g [h]

]
[x]

}

LevelQ

LevelQ[expr]
tests whether expr is a valid level specifi-
cation.

>> LevelQ[2]
True

>> LevelQ[{2, 4}]
True

>> LevelQ[Infinity]
True

>> LevelQ[a + b]
False

118

List

List[e1, e2, ..., ei]
{e1, e2, ..., ei}

represents a list containing the elements
e1...ei.

List is the head of lists:
>> Head[{1, 2, 3}]

List

Lists can be nested:
>> {{a, b, {c, d}}}

{{a, b, {c, d}}}

ListQ

ListQ[expr]
tests whether expr is a List.

>> ListQ[{1, 2, 3}]
True

>> ListQ[{{1, 2}, {3, 4}}]
True

>> ListQ[x]
False

Nearest

Nearest[list, x]
returns the one item in list that is nearest
to x.

Nearest[list, x, n]
returns the n nearest items.

Nearest[list, x, {n, r}]
returns up to n nearest items that are not
farther from x than r.

Nearest[{p1 -> q1, p2 -> q2, ...}, x]
returns q1, q2, ... but measures the dis-
tances using p1, p2, ...

Nearest[{p1, p2, ...} -> {q1, q2,
...}, x]

returns q1, q2, ... but measures the dis-
tances using p1, p2, ...

>> Nearest[{5, 2.5, 10, 11, 15,
8.5, 14}, 12]

{11}

Return all items within a distance of 5:
>> Nearest[{5, 2.5, 10, 11, 15,

8.5, 14}, 12, {All, 5}]

{11, 10, 14}

>> Nearest[{Blue -> "blue", White
-> "white", Red -> "red", Green
-> "green"}, {Orange, Gray}]

{{red} , {white}}

>> Nearest[{{0, 1}, {1, 2}, {2, 3}}
-> {a, b, c}, {1.1, 2}]

{b}

None

None
is a possible value for Span and Quiet.

NotListQ

NotListQ[expr]
returns true if expr is not a list.

119

PadLeft

PadLeft[list, n]
pads list to length n by adding 0 on the
left.

PadLeft[list, n, x]
pads list to length n by adding x on the
left.

PadLeft[list, {n1, $n2, ...}, x]
pads list to lengths n1, n2 at levels 1, 2, ...
respectively by adding x on the left.

PadLeft[list, n, x, m]
pads list to length n by adding x on the
left and adding a margin of m on the
right.

PadLeft[list, n, x, {m1, m2, ...}]
pads list to length n by adding x on the
left and adding margins of m1, m2, ... on
levels 1, 2, ... on the right.

PadLeft[list]
turns the ragged list list into a regular list
by adding 0 on the left.

>> PadLeft[{1, 2, 3}, 5]
{0, 0, 1, 2, 3}

>> PadLeft[x[a, b, c], 5]
x [0, 0, a, b, c]

>> PadLeft[{1, 2, 3}, 2]
{2, 3}

>> PadLeft[{{}, {1, 2}, {1, 2, 3}}]
{{0, 0, 0} , {0, 1, 2} , {1, 2, 3}}

>> PadLeft[{1, 2, 3}, 10, {a, b, c
}, 2]

{b, c, a, b, c, 1, 2, 3, a, b}

>> PadLeft[{{1, 2, 3}}, {5, 2}, x,
1]

{{x, x} , {x, x} , {x,
x} , {3, x} , {x, x}}

PadRight

PadRight[list, n]
pads list to length n by adding 0 on the
right.

PadRight[list, n, x]
pads list to length n by adding x on the
right.

PadRight[list, {n1, $n2, ...}, x]
pads list to lengths n1, n2 at levels 1, 2, ...
respectively by adding x on the right.

PadRight[list, n, x, m]
pads list to length n by adding x on the
left and adding a margin of m on the left.

PadRight[list, n, x, {m1, m2, ...}]
pads list to length n by adding x on the
right and adding margins of m1, m2, ...
on levels 1, 2, ... on the left.

PadRight[list]
turns the ragged list list into a regular list
by adding 0 on the right.

>> PadRight[{1, 2, 3}, 5]

{1, 2, 3, 0, 0}

>> PadRight[x[a, b, c], 5]

x [a, b, c, 0, 0]

>> PadRight[{1, 2, 3}, 2]

{1, 2}

>> PadRight[{{}, {1, 2}, {1, 2,
3}}]

{{0, 0, 0} , {1, 2, 0} , {1, 2, 3}}

>> PadRight[{1, 2, 3}, 10, {a, b, c
}, 2]

{b, c, 1, 2, 3, a, b, c, a, b}

>> PadRight[{{1, 2, 3}}, {5, 2}, x,
1]

{{x, x} , {x, 1} , {x,
x} , {x, x} , {x, x}}

120

Position

Position[expr, patt]
returns the list of positions for which expr
matches patt.

Position[expr, patt, ls]
returns the positions on levels specified
by levelspec ls.

>> Position[{1, 2, 2, 1, 2, 3, 2},
2]

{{2} , {3} , {5} , {7}}

Find positions upto 3 levels deep
>> Position[{1 + Sin[x], x, (Tan[x]

- y)^2}, x, 3]

{{1, 2, 1} , {2}}

Find all powers of x
>> Position[{1 + x^2, x y ^ 2, 4 y,

x ^ z}, x^_]

{{1, 2} , {4}}

Use Position as an operator
>> Position[_Integer][{1.5, 2,

2.5}]

{{2}}

Quartiles

Quartiles[list]
returns the 1/4, 1/2, and 3/4 quantiles of
list.

>> Quartiles[Range[25]]{
27
4

, 13,
77
4

}

RankedMax

RankedMax[list, n]
returns the nth largest element of list
(with n = 1 yielding the largest element,
n = 2 yielding the second largest element,
and so on).

>> RankedMax[{482, 17, 181, -12},
2]

181

RankedMin

RankedMin[list, n]
returns the nth smallest element of list
(with n = 1 yielding the smallest element,
n = 2 yielding the second smallest ele-
ment, and so on).

>> RankedMin[{482, 17, 181, -12},
2]

17

Split

Split[list]
splits list into collections of consecutive
identical elements.

Split[list, test]
splits list based on whether the function
test yields True on consecutive elements.

>> Split[{x, x, x, y, x, y, y, z}]

{{x, x, x} , {y} , {x} , {y, y} , {z}}

Split into increasing or decreasing runs of ele-
ments
>> Split[{1, 5, 6, 3, 6, 1, 6, 3,

4, 5, 4}, Less]

{{1, 5, 6} , {3, 6} , {1,
6} , {3, 4, 5} , {4}}

>> Split[{1, 5, 6, 3, 6, 1, 6, 3,
4, 5, 4}, Greater]

{{1} , {5} , {6, 3} , {6,
1} , {6, 3} , {4} , {5, 4}}

Split based on first element
>> Split[{x -> a, x -> y, 2 -> a, z

-> c, z -> a}, First[#1] ===
First[#2] &]

{{x− > a, x− > y} ,
{2− > a} , {z− > c, z− > a}}

121

SplitBy

SplitBy[list, f]
splits list into collections of consecutive
elements that give the same result when f
is applied.

>> SplitBy[Range[1, 3, 1/3], Round]{{
1,

4
3

}
,
{

5
3

, 2,
7
3

}
,
{

8
3

, 3
}}

>> SplitBy[{1, 2, 1, 1.2}, {Round,
Identity}]

{{{1}} , {{2}} , {{1} , {1.2}}}

SubsetQ

SubsetQ[list1, list2]
returns True if list2 is a subset of list1, and
False otherwise.

>> SubsetQ[{1, 2, 3}, {3, 1}]
True

The empty list is a subset of every list:
>> SubsetQ[{}, {}]

True

>> SubsetQ[{1, 2, 3}, {}]
True

Every list is a subset of itself:
>> SubsetQ[{1, 2, 3}, {1, 2, 3}]

True

TakeLargest

TakeLargest[list, f , n]
returns the a sorted list of the n largest
items in list.

>> TakeLargest[{100, -1, 50, 10},
2]

{100, 50}

None, Null, Indeterminate and expressions with
head Missing are ignored by default:

>> TakeLargest[{-8, 150, Missing[
abc]}, 2]

{150, − 8}

You may specify which items are ignored using
the option ExcludedForms:
>> TakeLargest[{-8, 150, Missing[

abc]}, 2, ExcludedForms -> {}]

{Missing [abc] , 150}

TakeLargestBy

TakeLargestBy[list, f , n]
returns the a sorted list of the n largest
items in list using f to retrieve the items’
keys to compare them.

For details on how to use the ExcludedForms
option, see TakeLargest[].
>> TakeLargestBy[{{1, -1}, {10,

100}, {23, 7, 8}, {5, 1}}, Total
, 2]

{{10, 100} , {23, 7, 8}}

>> TakeLargestBy[{"abc", "ab", "x
"}, StringLength, 1]

{abc}

TakeSmallest

TakeSmallest[list, f , n]
returns the a sorted list of the n smallest
items in list.

For details on how to use the ExcludedForms
option, see TakeLargest[].
>> TakeSmallest[{100, -1, 50, 10},

2]

{−1, 10}

122

TakeSmallestBy

TakeSmallestBy[list, f , n]
returns the a sorted list of the n smallest
items in list using f to retrieve the items’
keys to compare them.

For details on how to use the ExcludedForms
option, see TakeLargest[].
>> TakeSmallestBy[{{1, -1}, {10,

100}, {23, 7, 8}, {5, 1}}, Total
, 2]

{{1, − 1} , {5, 1}}

>> TakeSmallestBy[{"abc", "ab", "x
"}, StringLength, 1]

{x}

UnitVector

UnitVector[n, k]
returns the n-dimensional unit vector
with a 1 in position k.

UnitVector[k]
is equivalent to UnitVector[2, k].

>> UnitVector[2]
{0, 1}

>> UnitVector[4, 3]
{0, 0, 1, 0}

123

21. Numeric Evaluation and Precision
Support for numeric evaluation with arbitrary precision is just a proof-of-concept.
Precision is not “guarded” through the evaluation process. Only integer precision is supported. How-
ever, things like N[Pi, 100] should work as expected.

Contents

Chop 124
Hash 124
IntegerDigits 125
$MachineEpsilon . . . 125
MachinePrecision . . . 125

$MachinePrecision . . 125
$MaxPrecision 125
$MinPrecision 126
N 127
NIntegrate 127

NumericQ 127
Precision 128
Rationalize 128
RealDigits 128
Round 129

Chop

Chop[expr]
replaces floating point numbers close to 0
by 0.

Chop[expr, delta]
uses a tolerance of delta. The default tol-
erance is 10^-10.

>> Chop[10.0 ^ -16]
0

>> Chop[10.0 ^ -9]

1. × 10−9

>> Chop[10 ^ -11 I]
I

100 000 000 000

>> Chop[0. + 10 ^ -11 I]
0

Hash

Hash[expr]
returns an integer hash for the given expr.

Hash[expr, type]
returns an integer hash of the specified
type for the given expr.
The types supported are “MD5”,
“Adler32”, “CRC32”, “SHA”, “SHA224”,
“SHA256”, “SHA384”, and “SHA512”.

Hash[expr, type, format]
Returns the hash in the specified format.

> Hash[“The Adventures of Huckleberry Finn”]
= 213425047836523694663619736686226550816
> Hash[“The Adventures of Huckleberry Finn”,
“SHA256”] = 95092649594590384288057183408609254918934351811669818342876362244564858646638
> Hash[1/3] = 56073172797010645108327809727054836008
> Hash[{a, b, {c, {d, e, f}}}] = 135682164776235407777080772547528225284
> Hash[SomeHead[3.1415]] = 58042316473471877315442015469706095084
>> Hash[{a, b, c}, "xyzstr"]

Hash
[
{a, b, c} , xyzstr, Integer

]

124

IntegerDigits

IntegerDigits[n]
returns a list of the base-10 digits in the
integer n.

IntegerDigits[n, base]
returns a list of the base-base digits in n.

IntegerDigits[n, base, length]
returns a list of length length, truncating
or padding with zeroes on the left as nec-
essary.

>> IntegerDigits[76543]

{7, 6, 5, 4, 3}

The sign of n is discarded:
>> IntegerDigits[-76543]

{7, 6, 5, 4, 3}

>> IntegerDigits[15, 16]

{15}

>> IntegerDigits[1234, 16]

{4, 13, 2}

>> IntegerDigits[1234, 10, 5]

{0, 1, 2, 3, 4}

$MachineEpsilon

$MachineEpsilon
is the distance between 1.0 and the next
nearest representable machine-precision
number.

>> $MachineEpsilon

2.22045 × 10−16

>> x = 1.0 + {0.4, 0.5, 0.6}
$MachineEpsilon;

>> x - 1{
0., 0., 2.22045 × 10−16

}

MachinePrecision

MachinePrecision
represents the precision of machine pre-
cision numbers.

>> N[MachinePrecision]
15.9546

>> N[MachinePrecision, 30]
15.9545897701910033463281614204

$MachinePrecision

$MachinePrecision
is the number of decimal digits of preci-
sion for machine-precision numbers.

>> $MachinePrecision
15.9546

$MaxPrecision

$MaxPrecision
represents the maximum number of dig-
its of precision permitted in abitrary-
precision numbers.

>> $MaxPrecision
∞

>> $MaxPrecision = 10;

>> N[Pi, 11]
Requestedprecision11islargerthan$MaxPrecision.Usingcurrent$MaxPrecisiono f 10.instead.$MaxPrecision

= In f inityspeci f iesthatanyprecisionshouldbeallowed.

3.141592654

$MinPrecision

$MinPrecision
represents the minimum number of dig-
its of precision permitted in abitrary-
precision numbers.

>> $MinPrecision
0

125

>> $MinPrecision = 10;

>> N[Pi, 9]
Requestedprecision9issmallerthan$MinPrecision.Usingcurrent$MinPrecisiono f 10.instead.

3.141592654

N

N[expr, prec]
evaluates expr numerically with a preci-
sion of prec digits.

>> N[Pi, 50]
3.141592653589793238462643˜

˜3832795028841971693993751

>> N[1/7]
0.142857

>> N[1/7, 5]
0.14286

You can manually assign numerical values to
symbols. When you do not specify a precision,
MachinePrecision is taken.
>> N[a] = 10.9

10.9

>> a
a

N automatically threads over expressions, ex-
cept when a symbol has attributes NHoldAll,
NHoldFirst, or NHoldRest.
>> N[a + b]

10.9 + b

>> N[a, 20]
a

>> N[a, 20] = 11;

>> N[a + b, 20]
11.000000000000000000 + b

>> N[f[a, b]]
f [10.9, b]

>> SetAttributes[f, NHoldAll]

>> N[f[a, b]]
f [a, b]

The precision can be a pattern:

>> N[c, p_?(#>10&)] := p

>> N[c, 3]
c

>> N[c, 11]
11.000000000

You can also use UpSet or TagSet to specify val-
ues for N:
>> N[d] ^= 5;

However, the value will not be stored in
UpValues, but in NValues (as for Set):
>> UpValues[d]

{}

>> NValues[d]
{HoldPattern [N [d,

MachinePrecision]] :>5}

>> e /: N[e] = 6;

>> N[e]
6.

Values for N[expr] must be associated with the
head of expr:
>> f /: N[e[f]] = 7;

Tag f not f oundortoodeep f oranassignedrule.

You can use Condition:
>> N[g[x_, y_], p_] := x + y * Pi

/; x + y > 3

>> SetAttributes[g, NHoldRest]

>> N[g[1, 1]]
g [1., 1]

>> N[g[2, 2]] // InputForm
8.283185307179586

The precision of the result is no higher than the
precision of the input
>> N[Exp[0.1], 100]

1.10517

>> % // Precision
MachinePrecision

126

>> N[Exp[1/10], 100]
1.105170918075647624811707˜

˜826490246668224547194737˜
˜518718792863289440967966˜
˜747654302989143318970748654

>> % // Precision
100.

>> N[Exp[1.0‘20], 100]
2.7182818284590452354

>> % // Precision
20.

NIntegrate

NIntegrate[expr, interval]
returns a numeric approximation to the
definite integral of expr with limits inter-
val and with a precision of prec digits.

NIntegrate[expr, interval1, interval2, ...]
returns a numeric approximation to the
multiple integral of expr with limits inter-
val1, interval2 and with a precision of prec
digits.

>> NIntegrate[Exp[-x],{x,0,Infinity
},Tolerance->1*^-6]

1.

>> NIntegrate[Exp[x],{x,-Infinity,
0},Tolerance->1*^-6]

1.

>> NIntegrate[Exp[-x^2/2.],{x,-
Infinity, Infinity},Tolerance
->1*^-6]

2.50663

>> Table[1./NIntegrate[x^k,{x,0,1},
Tolerance->1*^-6], {k,0,6}]

Thespeci f iedmethod f ailedtoreturnanumber.Fallingbackintotheinternalevaluator.

{1., 2., 3., 4., 5., 6., 7.}

>> NIntegrate[1 / z, {z, -1 - I, 1
- I, 1 + I, -1 + I, -1 - I},
Tolerance->1.*^-4]

Integrationoveracomplexdomainisnotimplementedyet

NIntegrate
[

1
z

, {z, − 1 − I,

1 − I, 1 + I, − 1 + I, − 1 − I} ,

Tolerance− > 0.0001
]

Integrate singularities with weak divergences:
>> Table[NIntegrate[x^(1./k-1.), {

x,0,1.}, Tolerance->1*^-6], {k
,1,7.}]

{1., 2., 3., 4., 5., 6., 7.}

Mutiple Integrals :
>> NIntegrate[x * y,{x, 0, 1}, {y,

0, 1}]

0.25

NumericQ

NumericQ[expr]
tests whether expr represents a numeric
quantity.

>> NumericQ[2]
True

>> NumericQ[Sqrt[Pi]]
True

>> NumberQ[Sqrt[Pi]]

False

Precision

Precision[expr]
examines the number of significant digits
of expr.

This is rather a proof-of-concept than a full im-

plementation. Precision of compound expres-
sion is not supported yet.
>> Precision[1]

∞

127

>> Precision[1/2]
∞

>> Precision[0.5]
MachinePrecision

Rationalize

Rationalize[x]
converts a real number x to a nearby ra-
tional number.

Rationalize[x, dx]
finds the rational number within dx of x
with the smallest denominator.

>> Rationalize[2.2]
11
5

Not all numbers can be well approximated.
>> Rationalize[N[Pi]]

3.14159

Find the exact rational representation of N[Pi]
>> Rationalize[N[Pi], 0]

245 850 922
78 256 779

RealDigits

RealDigits[n]
returns the decimal representation of the
real number n as list of digits, together
with the number of digits that are to the
left of the decimal point.

RealDigits[n, b]
returns a list of base_b representation of
the real number n.

RealDigits[n, b, len]
returns a list of len digits.

RealDigits[n, b, len, p]
return len digits starting with the coeffi-
cient of b∧p

Return the list of digits and exponent:
>> RealDigits[123.55555]

{{1, 2, 3, 5, 5, 5, 5, 5,
0, 0, 0, 0, 0, 0, 0, 0} , 3}

Return an explicit recurring decimal form:

>> RealDigits[19 / 7]

{{2, {7, 1, 4, 2, 8, 5}} , 1}

The 10000th digit of is an 8:
>> RealDigits[Pi, 10, 1, -10000]

{{8} , − 9 999}

20 digits starting with the coefficient of 10∧-5:
>> RealDigits[Pi, 10, 20, -5]

{{9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3,
2, 3, 8, 4, 6, 2, 6, 4, 3} , − 4}

RealDigits gives Indeterminate if more digits
than the precision are requested:
>> RealDigits[123.45, 10, 18]

{{1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, Indeterminate,
Indeterminate} , 3}

Return 25 digits of in base 10:
>> RealDigits[Pi, 10, 25]

{{3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9,
7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3} , 1}

Round

Round[expr]
rounds expr to the nearest integer.

Round[expr, k]
rounds expr to the closest multiple of k.

>> Round[10.6]
11

>> Round[0.06, 0.1]
0.1

>> Round[0.04, 0.1]
0.

Constants can be rounded too
>> Round[Pi, .5]

3.

>> Round[Pi^2]
10

Round to exact value
>> Round[2.6, 1/3]

8
3

128

>> Round[10, Pi]
3Pi

Round complex numbers
>> Round[6/(2 + 3 I)]

1 − I

>> Round[1 + 2 I, 2 I]
2I

Round Negative numbers too
>> Round[-1.4]

−1

Expressions other than numbers remain uneval-
uated:
>> Round[x]

Round [x]

>> Round[1.5, k]
Round [1.5, k]

129

22. Arithmetic Functions
Arithmetic Functions are functions that work on individual numbers, lists, and arrays: in either sym-
bolic or algebraic forms.

Contents

Basic Arithmetic 130
CubeRoot 130
Divide (/) 130
Minus (-) 131

Plus (+) 131
Power (^) 132
Sqrt 132
Subtract (-) 132
Times (*) 133

Sums, Simple Statistics 133
Accumulate 133
Mean 133
Total 133

Basic Arithmetic
Basic Arithmetic
The functions here are the basic arithmetic oper-
ations that you might find on a calculator.

CubeRoot

CubeRoot[n]
finds the real-valued cube root of the
given n.

>> CubeRoot[16]

22
1
3

Divide (/)

Divide[a, b]
a / b

represents the division of a by b.

>> 30 / 5
6

>> 1 / 8

>> Pi / 4
Pi
4

Use N or a decimal point to force numeric evalu-
ation:

>> Pi / 4.0
0.785398

>> 1 / 8

>> N[%]
0.125

Nested divisions:
>> a / b / c

a
bc

>> a / (b / c)
ac
b

>> a / b / (c / (d / e))
ad
bce

>> a / (b ^ 2 * c ^ 3 / e)
ae

b2c3

Minus (-)

Minus[expr]
is the negation of expr.

>> -a //FullForm
Times [− 1, a]

Minus automatically distributes:

130

>> -(x - 2/3)
2
3
− x

Minus threads over lists:
>> -Range[10]

{−1, − 2, − 3, − 4, − 5,
− 6, − 7, − 8, − 9, − 10}

Plus (+)

Plus[a, b, ...]
a + b + ...

represents the sum of the terms a, b, ...

>> 1 + 2
3

Plus performs basic simplification of terms:
>> a + b + a

2a + b

>> a + a + 3 * a
5a

>> a + b + 4.5 + a + b + a + 2 +
1.5 b

6.5 + 3a + 3.5b

Apply Plus on a list to sum up its elements:
>> Plus @@ {2, 4, 6}

12

The sum of the first 1000 integers:
>> Plus @@ Range[1000]

500 500

Plus has default value 0:
>> DefaultValues[Plus]

{HoldPattern [Default [Plus]] :>0}

>> a /. n_. + x_ :> {n, x}

{0, a}

The sum of 2 red circles and 3 red circles is...

>> 2 Graphics[{Red,Disk[]}] + 3
Graphics[{Red,Disk[]}]

5

Power (^)

Power[a, b]
a ^ b

represents a raised to the power of b.

>> 4 ^ (1/2)
2

>> 4 ^ (1/3)

2
2
3

>> 3^123
48 519 278 097 689 642 681 ˜

˜155 855 396 759 336 072 ˜
˜749 841 943 521 979 872 827

>> (y ^ 2)^ (1/2)√
y2

>> (y ^ 2)^ 3

y6

131

>> Plot[Evaluate[Table[x^y, {y, 1,
5}]], {x, -1.5, 1.5},
AspectRatio -> 1]

−1.5−1.0−0.5 0.5 1.0 1.5

−3

−2

−1

1

2

3

Use a decimal point to force numeric evaluation:
>> 4.0 ^ (1/3)

1.5874

Power has default value 1 for its second argu-
ment:
>> DefaultValues[Power]

{HoldPattern [Default [Power, 2]] :>1}

>> a /. x_ ^ n_. :> {x, n}

{a, 1}

Power can be used with complex numbers:
>> (1.5 + 1.0 I)^ 3.5

−3.68294 + 6.95139I

>> (1.5 + 1.0 I)^ (3.5 + 1.5 I)
−3.19182 + 0.645659I

Sqrt

Sqrt[expr]
returns the square root of expr.

>> Sqrt[4]
2

>> Sqrt[5]
√

5

>> Sqrt[5] // N
2.23607

>> Sqrt[a]^2
a

Complex numbers:
>> Sqrt[-4]

2I

>> I == Sqrt[-1]
True

>> Plot[Sqrt[a^2], {a, -2, 2}]

−2 −1 1 2

0.5

1.0

1.5

2.0

Subtract (-)

Subtract[a, b]
a - b

represents the subtraction of b from a.

>> 5 - 3
2

>> a - b // FullForm
Plus [a, Times [− 1, b]]

>> a - b - c
a − b − c

>> a - (b - c)
a − b + c

Times (*)

Times[a, b, ...]
a * b * ...
a b ...

represents the product of the terms a, b, ...

>> 10 * 2
20

>> 10 2
20

>> a * a

a2

132

>> x ^ 10 * x ^ -2

x8

>> {1, 2, 3} * 4
{4, 8, 12}

>> Times @@ {1, 2, 3, 4}
24

>> IntegerLength[Times@@Range
[5000]]

16 326

Times has default value 1:
>> DefaultValues[Times]

{HoldPattern [Default [Times]] :>1}

>> a /. n_. * x_ :> {n, x}

{1, a}

Sums, Simple Statistics
Sums, Simple Statistics
These functions perform a simple arithmetic
computation over a list.

Accumulate

Accumulate[list]
accumulates the values of list, returning a
new list.

>> Accumulate[{1, 2, 3}]
{1, 3, 6}

Mean

Mean[list]
returns the statistical mean of list.

>> Mean[{26, 64, 36}]
42

>> Mean[{1, 1, 2, 3, 5, 8}]
10
3

>> Mean[{a, b}]
a + b

2

Total

Total[list]
adds all values in list.

Total[list, n]
adds all values up to level n.

Total[list, {n}]
totals only the values at level {n}.

Total[list, {n_1, n_2}]
totals at levels {n_1, n_2}.

>> Total[{1, 2, 3}]
6

>> Total[{{1, 2, 3}, {4, 5, 6}, {7,
8 ,9}}]

{12, 15, 18}

Total over rows and columns
>> Total[{{1, 2, 3}, {4, 5, 6}, {7,

8 ,9}}, 2]

45

Total over rows instead of columns
>> Total[{{1, 2, 3}, {4, 5, 6}, {7,

8 ,9}}, {2}]

{6, 15, 24}

133

23. Colors
Programmatic support for symbolic colors.

Contents

Color Directives 134
CMYKColor . . . 134
ColorDistance . . 135
GrayLevel 135
Hue 135
LABColor 135
LCHColor 135
LUVColor 135
RGBColor 136
XYZColor 136

Color Operations . . . 136
Blend 136
ColorConvert . . . 136
ColorNegate . . . 137

Darker 137
DominantColors . 138
Lighter 138

Named Colors 138
Black 139
Blue 139
Brown 140
Cyan 140
Gray 141
Green 141
LightBlue 142
LightBrown 142
LightCyan 143
LightGray 143

LightGreen 144
LightMagenta . . 144
LightOrange . . . 145
LightPink 145
LightPurple 146
LightRed 146
LightYellow . . . 147
Magenta 147
Orange 148
Pink 148
Purple 148
Red 149
White 149
Yellow 150

Color Directives
Color Directives
There are many different way to specify color;
we support all of the color formats below and
will convert between the different color formats.

CMYKColor

CMYKColor[c, m, y, k]
represents a color with the specified cyan,
magenta, yellow and black components.

>> Graphics[MapIndexed[{CMYKColor
@@ #1, Disk[2*#2 ~Join~{0}]} &,
IdentityMatrix[4]], ImageSize->
Small]

ColorDistance

ColorDistance[c1, c2]
returns a measure of color distance be-
tween the colors c1 and c2.

ColorDistance[list, c2]
returns a list of color distances between
the colors in list and c2.

The option DistanceFunction specifies the
method used to measure the color distance.
Available options are:

• CIE76: Euclidean distance in the LAB-
Color space

• CIE94: Euclidean distance in the LCH-
Color space

• CIE2000 or CIEDE2000: CIE94 distance
with corrections

• CMC: Color Measurement Committee
metric (1984)

• DeltaL: difference in the L component of
LCHColor

• DeltaC: difference in the C component of
LCHColor

134

• DeltaH: difference in the H component of
LCHColor

It is also possible to specify a custom distance.
>> ColorDistance[Magenta, Green]

2.2507

>> ColorDistance[{Red, Blue}, {
Green, Yellow}, DistanceFunction
-> {"CMC", "Perceptibility"}]

{1.0495, 1.27455}

GrayLevel

GrayLevel[g]
represents a shade of gray specified by g,
ranging from 0 (black) to 1 (white).

GrayLevel[g, a]
represents a shade of gray specified by g
with opacity a.

Hue

Hue[h, s, l, a]
represents the color with hue h, satura-
tion s, lightness l and opacity a.

Hue[h, s, l]
is equivalent to Hue[h, s, l, 1].

Hue[h, s]
is equivalent to Hue[h, s, 1, 1].

Hue[h]
is equivalent to Hue[h, 1, 1, 1].

>> Graphics[Table[{EdgeForm[Gray],
Hue[h, s], Disk[{12h, 8s}]}, {h,
0, 1, 1/6}, {s, 0, 1, 1/4}]]

>> Graphics[Table[{EdgeForm[{
GrayLevel[0, 0.5]}], Hue[(-11+q
+10r)/72, 1, 1, 0.6], Disk[(8-r)
{Cos[2Pi q/12], Sin[2Pi q/12]},
(8-r)/3]}, {r, 6}, {q, 12}]]

LABColor

LABColor[l, a, b]
represents a color with the specified light-
ness, red/green and yellow/blue compo-
nents in the CIE 1976 L*a*b* (CIELAB)
color space.

LCHColor

LCHColor[l, c, h]
represents a color with the specified light-
ness, chroma and hue components in the
CIELCh CIELab cube color space.

LUVColor

LCHColor[l, u, v]
represents a color with the specified com-
ponents in the CIE 1976 L*u*v* (CIELUV)
color space.

RGBColor

RGBColor[r, g, b]
represents a color with the specified red,
green and blue components.

135

>> Graphics[MapIndexed[{RGBColor @@
#1, Disk[2*#2 ~Join~{0}]} &,

IdentityMatrix[3]], ImageSize->
Small]

>> RGBColor[0, 1, 0]

>> RGBColor[0, 1, 0] // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 1, 0] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

XYZColor

XYZColor[x, y, z]
represents a color with the specified com-
ponents in the CIE 1931 XYZ color space.

Color Operations
Color Operations
Functions for manipulating colors and color im-
ages.

Blend

Blend[{c1, c2}]
represents the color between c1 and c2.

Blend[{c1, c2}, x]
represents the color formed by blending
c1 and c2 with factors 1 - x and x respec-
tively.

Blend[{c1, c2, ..., cn}, x]
blends between the colors c1 to cn accord-
ing to the factor x.

>> Blend[{Red, Blue}]

>> Blend[{Red, Blue}, 0.3]

>> Blend[{Red, Blue, Green}, 0.75]

>> Graphics[Table[{Blend[{Red,
Green, Blue}, x], Rectangle[{10
x, 0}]}, {x, 0, 1, 1/10}]]

>> Graphics[Table[{Blend[{RGBColor
[1, 0.5, 0, 0.5], RGBColor[0, 0,
1, 0.5]}, x], Disk[{5x, 0}]}, {

x, 0, 1, 1/10}]]

ColorConvert

ColorConvert[c, colspace]
returns the representation of c in the color
space colspace. c may be a color or an im-
age.

Valid values for colspace are:
CMYK: convert to CMYKColor Grayscale: con-
vert to GrayLevel HSB: convert to Hue LAB:
concert to LABColor LCH: convert to LCHColor
LUV: convert to LUVColor RGB: convert to RG-
BColor XYZ: convert to XYZColor

136

ColorNegate
<dl> <dt>ColorNegate[image] <dd>returns the
negative of image in which colors have been
negated.
<dt>ColorNegate[color] <dd>returns the nega-
tive of a color.
Yellow is RGBColor[1.0, 1.0, 0.0]
>> ColorNegate[Yellow]

</dl>

Darker

Darker[c, f]
is equivalent to Blend[{c, Black}, f].

Darker[c]
is equivalent to Darker[c, 1/3].

>> Graphics[{Darker[Red], Disk[]}]

>> Graphics3D[{Darker[Green],
Sphere[]}]

>> Graphics[Table[{Darker[Yellow, x
], Disk[{12x, 0}]}, {x, 0, 1,
1/6}]]

DominantColors

DominantColors[image]
gives a list of colors which are dominant
in the given image.

DominantColors[image, n]
returns at most n colors.

DominantColors[image, n, prop]
returns the given property prop, which
may be “Color” (return RGB col-
ors), “LABColor” (return LAB colors),
“Count” (return the number of pixels a
dominant color covers), “Coverage” (re-
turn the fraction of the image a dominant
color covers), or “CoverageImage” (re-
turn a black and white image indicating
with white the parts that are covered by
a dominant color).

The option “ColorCoverage” specifies the min-
imum amount of coverage needed to include a
dominant color in the result.
The option “MinColorDistance” specifies the
distance (in LAB color space) up to which col-
ors are merged and thus regarded as belonging
to the same dominant color.

137

>> img = Import["ExampleData/lena.
tif"]

−Image−

>> DominantColors[img]

{ , , , , , }

>> DominantColors[img, 3]

{ , , }

>> DominantColors[img, 3, "Coverage
"]{

28 579
131 072

,
751

4 096
,

23 841
131 072

}
>> DominantColors[img, 3, "

CoverageImage"]

{−Image−, − Image−, − Image−}

>> DominantColors[img, 3, "Count"]

{57 158, 48 064, 47 682}

>> DominantColors[img, 2, "LABColor
"]

{ , }

>> DominantColors[img,
MinColorDistance -> 0.5]

{ , }

>> DominantColors[img,
ColorCoverage -> 0.15]

{ , , }

Lighter

Lighter[c, f]
is equivalent to Blend[{c, White}, f].

Lighter[c]
is equivalent to Lighter[c, 1/3].

>> Lighter[Orange, 1/4]

>> Graphics[{Lighter[Orange, 1/4],
Disk[]}]

>> Graphics[Table[{Lighter[Orange,
x], Disk[{12x, 0}]}, {x, 0, 1,
1/6}]]

Named Colors
Named Colors
Mathics has definitions for the most common
color names which can be used in a graphics or
style specification.

Black

Black
represents the color black in graphics.

>> Graphics[{EdgeForm[Black], Black
, Disk[]}, ImageSize->Small]

138

>> Black // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 0, 0] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Black

Blue

Blue
represents the color blue in graphics.

>> Graphics[{EdgeForm[Black], Blue,
Disk[]}, ImageSize->Small]

>> Blue // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 0, 1] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Blue

Brown

Brown
represents the color brown in graphics.

>> Graphics[{EdgeForm[Black], Brown
, Disk[]}, ImageSize->Small]

139

>> Brown // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.6, 0.4,
0.2] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Brown

Cyan

Cyan
represents the color cyan in graphics.

>> Graphics[{EdgeForm[Black], Cyan,
Disk[]}, ImageSize->Small]

>> Cyan // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 1, 1] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Cyan

Gray

Gray
represents the color gray in graphics.

>> Graphics[{EdgeForm[Black], Gray,
Disk[]}, ImageSize->Small]

140

>> Gray // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0, 0]] ,

GrayLevel [0.5] , RectangleBox
[
{0,

0}
]}

, $OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Gray

Green

Green
represents the color green in graphics.

>> Graphics[{EdgeForm[Black], Green
, Disk[]}, ImageSize->Small]

>> Green // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0, 1, 0] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Green

LightBlue

LightBlue
represents the color light blue in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightBlue, Disk[]}, ImageSize->
Small]

141

>> LightBlue // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0,

0, 0]] , RGBColor [0.87, 0.94,
1] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Graphics[{LightBlue, EdgeForm[
Black], Disk[]}]

>> Plot[Sin[x], {x, 0, 2 Pi},
Background -> LightBlue]

1 2 3 4 5 6

−1.0

−0.5

0.5

1.0

LightBrown

LightBrown
represents the color light brown in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightBrown, Disk[]}, ImageSize->
Small]

>> LightBrown // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [0.94, 0.91, 0.88
] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightCyan

LightCyan
represents the color light cyan in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightCyan, Disk[]}, ImageSize->
Small]

142

>> LightCyan // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [0.9, 1.,
1.] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightGray

LightGray
represents the color light gray in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightGray, Disk[]}, ImageSize->
Small]

>> LightGray // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0,

0, 0]] , GrayLevel [0.666667,
1.] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightGreen

LightGreen
represents the color light green in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightGreen, Disk[]}, ImageSize->
Small]

143

>> LightGreen // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [0.88, 1., 0.88
] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightMagenta

LightMagenta
represents the color light magenta in
graphics.

>> Graphics[{EdgeForm[Black],
LightMagenta, Disk[]}, ImageSize
->Small]

>> LightMagenta // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [1., 0.333333,
1.] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightOrange

LightOrange
represents the color light orange in
graphics.

>> Graphics[{EdgeForm[Black],
LightOrange, Disk[]}, ImageSize
->Small]

144

>> LightOrange // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0,

0, 0]] , RGBColor [1, 0.9, 0.8] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightPink

LightPink
represents the color light pink in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightPink, Disk[]}, ImageSize->
Small]

>> LightPink // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [1., 0.925, 0.925
] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightPurple

LightPurple
represents the color light purple in graph-
ics.

>> Graphics[{EdgeForm[Black],
LightPurple, Disk[]}, ImageSize
->Small]

145

>> LightPurple // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [0.94, 0.88, 0.94
] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightRed

LightRed
represents the color light red in graphics.

>> Graphics[{EdgeForm[Black],
LightRed, Disk[]}, ImageSize->
Small]

>> LightRed // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [1., 0.85, 0.85
] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

LightYellow

LightYellow
represents the color light yellow in
graphics.

>> Graphics[{EdgeForm[Black],
LightYellow, Disk[]}, ImageSize
->Small]

146

>> LightYellow // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0,

0]] , RGBColor [1., 1., 0.333333
] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

Magenta

Magenta
represents the color magenta in graphics.

>> Graphics[{EdgeForm[Black],
Magenta, Disk[]}, ImageSize->
Small]

>> Magenta // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0, 1] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Magenta

Orange

Orange
represents the color orange in graphics.

>> Graphics[{EdgeForm[Black],
Orange, Disk[]}, ImageSize->
Small]

147

>> Orange // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0.5,
0] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

Pink

Pink
represents the color pink in graphics.

>> Graphics[{EdgeForm[Black], Pink,
Disk[]}, ImageSize->Small]

>> Pink // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1., 0.5,
0.5] , RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

Purple

Purple
represents the color purple in graphics.

>> Graphics[{EdgeForm[Black],
Purple, Disk[]}, ImageSize->
Small]

>> Purple // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0,

0, 0]] , RGBColor [0.5, 0, 0.5] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

Red

Red
represents the color red in graphics.

>> Graphics[{EdgeForm[Black], Red,
Disk[]}, ImageSize->Small]

148

>> Red // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 0, 0] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Red

White

White
represents the color white in graphics.

>> Graphics[{EdgeForm[Black], White
, Disk[]}, ImageSize->Small]

>> White // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [0, 0, 0]] ,

GrayLevel [1] , RectangleBox
[
{0,

0}
]}

, $OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> White

Yellow

Yellow
represents the color yellow in graphics.

>> Graphics[{EdgeForm[Black],
Yellow, Disk[]}, ImageSize->
Small]

149

>> Yellow // ToBoxes

StyleBox
[
GraphicsBox

[{
EdgeForm [RGBColor [

0, 0, 0]] , RGBColor [1, 1, 0] ,
RectangleBox

[
{0, 0}

]}
,

$OptionSyntax− > Ignore,
AspectRatio− > Automatic,
Axes− > False, AxesStyle− > {} ,
Background− > Automatic,
ImageSize− > 16,
LabelStyle− > {} ,
PlotRange− > Automatic,
PlotRangePadding− > Automatic,
TicksStyle− > {}

]
,

ImageSizeMultipliers− > {1, 1}
]

>> Yellow

150

24. Distance and Similarity Measures
Different measures of distance or similarity for different types of analysis.

Contents

String Distances and
Similarity
Measures 151
DamerauLeven-

shteinDis-
tance . . . 151

EditDistance . . . 152
HammingDistance 152

String Distances and Similarity
Measures
String Distances and Similarity Measure

DamerauLevenshteinDistance

DamerauLevenshteinDistance[a, b]
returns the Damerau-Levenshtein dis-
tance of a and b, which is defined as
the minimum number of transpositions,
insertions, deletions and substitutions
needed to transform one into the other. In
contrast to EditDistance, DamerauLeven-
shteinDistance counts transposition of
adjacent items (e.g. “ab” into “ba”) as one
operation of change.

>> DamerauLevenshteinDistance["
kitten", "kitchen"]

2

>> DamerauLevenshteinDistance["abc
", "ac"]

1

>> DamerauLevenshteinDistance["abc
", "acb"]

1

>> DamerauLevenshteinDistance["azbc
", "abxyc"]

3

The IgnoreCase option makes DamerauLeven-
shteinDistance ignore the case of letters:
>> DamerauLevenshteinDistance["time

", "Thyme"]

3

>> DamerauLevenshteinDistance["time
", "Thyme", IgnoreCase -> True]

2

DamerauLevenshteinDistance also works on
lists:
>> DamerauLevenshteinDistance[{1, E

, 2, Pi}, {1, E, Pi, 2}]

1

EditDistance

EditDistance[a, b]
returns the Levenshtein distance of a and
b, which is defined as the minimum num-
ber of insertions, deletions and substi-
tutions on the constituents of a and b
needed to transform one into the other.

>> EditDistance["kitten", "kitchen
"]

2

>> EditDistance["abc", "ac"]
1

>> EditDistance["abc", "acb"]
2

151

>> EditDistance["azbc", "abxyc"]
3

The IgnoreCase option makes EditDistance ig-
nore the case of letters:
>> EditDistance["time", "Thyme"]

3

>> EditDistance["time", "Thyme",
IgnoreCase -> True]

2

EditDistance also works on lists:
>> EditDistance[{1, E, 2, Pi}, {1,

E, Pi, 2}]

2

HammingDistance

HammingDistance[u, v]
returns the Hamming distance between
u and v, i.e. the number of different el-
ements. u and v may be lists or strings.

>> HammingDistance[{1, 0, 1, 0},
{1, 0, 0, 1}]

2

>> HammingDistance["time", "dime"]
1

>> HammingDistance["TIME", "dime",
IgnoreCase -> True]

1

152

25. Graphics, Drawing, and Images

Functions like Plot and ListPlot can be used to
draw graphs of functions and data.
Graphics is implemented as a collection of graph-
ics primitives. Primatives are objects like Point,
Line, and Polygon and become elements of a
graphics object.
A graphics object can have directives as well
such as RGBColor, and Thickness.
There are several kinds of graphics objects; each
kind has a head which identifies its type.

>> ListPlot[Table[Prime[n], {n,
20}]]

5 10 15 20

20

40

60

» Head[%] = Graphics » Graphics3D[Sphere[]] =
-Graphics3D- » Head[%] = Graphics3D »

Contents

Image[] and image
related functions. 154
Binarize 154
BinaryImageQ . . 154
Blur 154
BoxMatrix 154
Closing 154
ColorCombine . . 155
ColorQuantize . . 155
ColorSeparate . . 155
Colorize 155
DiamondMatrix . 155
Dilation 155
DiskMatrix 155
EdgeDetect 156
Erosion 156
GaussianFilter . . 156
ImageAdd 156
ImageAdjust . . . 156
ImageAspectRatio 156
Image 157
ImageChannels . . 157
ImageColorSpace . 157

ImageConvolve . 157
ImageData 157
ImageDimensions 157
ImageImport . . . 157
ImageMultiply . . 158
ImagePartition . . 158
ImageQ 158
ImageReflect . . . 158
ImageResize . . . 159
ImageRotate . . . 159
ImageSubtract . . 159
ImageTake 159
ImageType 160
MaxFilter 160
MedianFilter . . . 160
MinFilter 160
Opening 160
PixelValue 160
PixelValuePositions 160
RandomImage . . 161
Sharpen 161
TextRecognize . . 161
Threshold 161

WordCloud 161
Three-Dimensional

Graphics 161
Cuboid 162
Cylinder 162
Graphics3D 163
Sphere 164

Plotting Data 164
BarChart 165
ColorData 165
DensityPlot 166
Histogram 167
ListLinePlot . . . 167
ListPlot 167
ParametricPlot . . 168
PieChart 170
Plot 171
Plot3D 172
PolarPlot 172

Splines 173
BernsteinBasis . . 173
BezierCurve . . . 173
BezierFunction . . 173

153

Image[] and image related
functions.
Image[] and image related functions.
Note that you (currently) need scikit-image in-
stalled in order for this module to work.

Binarize

Binarize[image]
gives a binarized version of image, in
which each pixel is either 0 or 1.

Binarize[image, t]
map values x > t to 1, and values x <= t to
0.

Binarize[image, {t1, t2}]
map t1 < x < t2 to 1, and all other values
to 0.

>> img = Import["ExampleData/lena.
tif"];

>> Binarize[img]
−Image−

>> Binarize[img, 0.7]
−Image−

>> Binarize[img, {0.2, 0.6}]
−Image−

BinaryImageQ

BinaryImageQ[$image]
returns True if the pixels of $image are bi-
nary bit values, and False otherwise.

>> img = Import["ExampleData/lena.
tif"];

>> BinaryImageQ[img]

False

>> BinaryImageQ[Binarize[img]]
True

Blur

Blur[image]
gives a blurred version of image.

Blur[image, r]
blurs image with a kernel of size r.

>> lena = Import["ExampleData/lena.
tif"];

>> Blur[lena]
−Image−

>> Blur[lena, 5]
−Image−

BoxMatrix

BoxMatrix[$s]
Gives a box shaped kernel of size 2 s + 1.

>> BoxMatrix[3]
{{1, 1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1,

1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1,
1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {1,
1, 1, 1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1}}

Closing

Closing[image, ker]
Gives the morphological closing of image
with respect to structuring element ker.

>> ein = Import["ExampleData/
Einstein.jpg"];

>> Closing[ein, 2.5]
−Image−

ColorCombine

ColorCombine[channels, colorspace]
Gives an image with colorspace and the
respective components described by the
given channels.

154

>> ColorCombine[{{{1, 0}, {0,
0.75}}, {{0, 1}, {0, 0.25}},
{{0, 0}, {1, 0.5}}}, "RGB"]

−Image−

ColorQuantize

ColorQuantize[image, n]
gives a version of image using only n col-
ors.

>> img = Import["ExampleData/lena.
tif"];

>> ColorQuantize[img, 6]
−Image−

ColorSeparate

ColorSeparate[image]
Gives each channel of image as a separate
grayscale image.

Colorize

Colorize[values]
returns an image where each number in
the rectangular matrix values is a pixel
and each occurence of the same number
is displayed in the same unique color,
which is different from the colors of all
non-identical numbers.

Colorize[image]
gives a colorized version of image.

>> Colorize[{{1.3, 2.1, 1.5}, {1.3,
1.3, 2.1}, {1.3, 2.1, 1.5}}]

−Image−

>> Colorize[{{1, 2}, {2, 2}, {2,
3}}, ColorFunction -> (Blend[{
White, Blue}, #]&)]

−Image−

DiamondMatrix

DiamondMatrix[$s]
Gives a diamond shaped kernel of size 2
s + 1.

>> DiamondMatrix[3]
{{0, 0, 0, 1, 0, 0, 0} , {0, 0, 1, 1, 1,

0, 0} , {0, 1, 1, 1, 1, 1, 0} , {1, 1, 1,
1, 1, 1, 1} , {0, 1, 1, 1, 1, 1, 0} , {0,
0, 1, 1, 1, 0, 0} , {0, 0, 0, 1, 0, 0, 0}}

Dilation

Dilation[image, ker]
Gives the morphological dilation of image
with respect to structuring element ker.

>> ein = Import["ExampleData/
Einstein.jpg"];

>> Dilation[ein, 2.5]
−Image−

DiskMatrix

DiskMatrix[$s]
Gives a disk shaped kernel of size 2 s + 1.

>> DiskMatrix[3]
{{0, 0, 1, 1, 1, 0, 0} , {0, 1, 1, 1, 1,

1, 0} , {1, 1, 1, 1, 1, 1, 1} , {1, 1, 1,
1, 1, 1, 1} , {1, 1, 1, 1, 1, 1, 1} , {0,
1, 1, 1, 1, 1, 0} , {0, 0, 1, 1, 1, 0, 0}}

EdgeDetect

EdgeDetect[image]
returns an image showing the edges in
image.

>> lena = Import["ExampleData/lena.
tif"];

>> EdgeDetect[lena]
−Image−

155

>> EdgeDetect[lena, 5]
−Image−

>> EdgeDetect[lena, 4, 0.5]
−Image−

Erosion

Erosion[image, ker]
Gives the morphological erosion of image
with respect to structuring element ker.

>> ein = Import["ExampleData/
Einstein.jpg"];

>> Erosion[ein, 2.5]
−Image−

GaussianFilter

GaussianFilter[image, r]
blurs image using a Gaussian blur filter of
radius r.

>> lena = Import["ExampleData/lena.
tif"];

>> GaussianFilter[lena, 2.5]
−Image−

ImageAdd

ImageAdd[image, expr_1, expr_2, ...]
adds all expr_i to image where each expr_i
must be an image or a real number.

>> i = Image[{{0, 0.5, 0.2, 0.1,
0.9}, {1.0, 0.1, 0.3, 0.8,
0.6}}];

>> ImageAdd[i, 0.5]
−Image−

>> ImageAdd[i, i]
−Image−

>> ein = Import["ExampleData/
Einstein.jpg"];

>> noise = RandomImage[{-0.1, 0.1},
ImageDimensions[ein]];

>> ImageAdd[noise, ein]
−Image−

>> lena = Import["ExampleData/lena.
tif"];

>> noise = RandomImage[{-0.2, 0.2},
ImageDimensions[lena],

ColorSpace -> "RGB"];

>> ImageAdd[noise, lena]
−Image−

ImageAdjust

ImageAdjust[image]
adjusts the levels in image.

ImageAdjust[image, c]
adjusts the contrast in image by c.

ImageAdjust[image, {c, b}]
adjusts the contrast c, and brightness b in
image.

ImageAdjust[image, {c, b, g}]
adjusts the contrast c, brightness b, and
gamma g in image.

>> lena = Import["ExampleData/lena.
tif"];

>> ImageAdjust[lena]
−Image−

ImageAspectRatio

ImageAspectRatio[image]
gives the aspect ratio of image.

>> img = Import["ExampleData/lena.
tif"];

>> ImageAspectRatio[img]
1

>> ImageAspectRatio[Image[{{0, 1},
{1, 0}, {1, 1}}]]

3
2

156

Image

ImageChannels

ImageChannels[image]
gives the number of channels in image.

>> ImageChannels[Image[{{0, 1}, {1,
0}}]]

1

>> img = Import["ExampleData/lena.
tif"];

>> ImageChannels[img]
3

ImageColorSpace

ImageColorSpace[image]
gives image’s color space, e.g. “RGB” or
“CMYK”.

>> img = Import["ExampleData/lena.
tif"];

>> ImageColorSpace[img]
RGB

ImageConvolve

ImageConvolve[image, kernel]
Computes the convolution of image using
kernel.

>> img = Import["ExampleData/lena.
tif"];

>> ImageConvolve[img, DiamondMatrix
[5] / 61]

−Image−

>> ImageConvolve[img, DiskMatrix[5]
/ 97]

−Image−

>> ImageConvolve[img, BoxMatrix[5]
/ 121]

−Image−

ImageData

ImageData[image]
gives a list of all color values of image as a
matrix.

ImageData[image, stype]
gives a list of color values in type stype.

>> img = Image[{{0.2, 0.4}, {0.9,
0.6}, {0.5, 0.8}}];

>> ImageData[img]

{{0.2, 0.4} , {0.9, 0.6} , {0.5, 0.8}}

>> ImageData[img, "Byte"]

{{51, 102} , {229, 153} , {127, 204}}

>> ImageData[Image[{{0, 1}, {1, 0},
{1, 1}}], "Bit"]

{{0, 1} , {1, 0} , {1, 1}}

ImageDimensions

ImageDimensions[image]
Returns the dimensions of image in pixels.

>> lena = Import["ExampleData/lena.
tif"];

>> ImageDimensions[lena]

{512, 512}

>> ImageDimensions[RandomImage[1,
{50, 70}]]

{50, 70}

ImageImport
>> Import["ExampleData/Einstein.jpg

"]

−Image−

>> Import["ExampleData/MadTeaParty.
gif"]

−Image−

>> Import["ExampleData/moon.tif"]
−Image−

157

ImageMultiply

ImageMultiply[image, expr_1, expr_2,
...]

multiplies all expr_i with image where
each expr_i must be an image or a real
number.

>> i = Image[{{0, 0.5, 0.2, 0.1,
0.9}, {1.0, 0.1, 0.3, 0.8,
0.6}}];

>> ImageMultiply[i, 0.2]
−Image−

>> ImageMultiply[i, i]
−Image−

>> ein = Import["ExampleData/
Einstein.jpg"];

>> noise = RandomImage[{0.7, 1.3},
ImageDimensions[ein]];

>> ImageMultiply[noise, ein]
−Image−

ImagePartition

ImagePartition[image, s]
Partitions an image into an array of s x s
pixel subimages.

ImagePartition[image, {w, h}]
Partitions an image into an array of w x h
pixel subimages.

>> lena = Import["ExampleData/lena.
tif"];

>> ImageDimensions[lena]

{512, 512}

>> ImagePartition[lena, 256]

{{−Image−, − Image−} ,
{−Image−, − Image−}}

>> ImagePartition[lena, {512, 128}]

{{−Image−} , {−Image−} ,
{−Image−} , {−Image−}}

ImageQ

ImageQ[Image[$pixels]]
returns True if $pixels has dimensions
from which an Image can be constructed,
and False otherwise.

>> ImageQ[Image[{{0, 1}, {1, 0}}]]
True

>> ImageQ[Image[{{{0, 0, 0}, {0, 1,
0}}, {{0, 1, 0}, {0, 1, 1}}}]]

True

>> ImageQ[Image[{{{0, 0, 0}, {0,
1}}, {{0, 1, 0}, {0, 1, 1}}}]]

False

>> ImageQ[Image[{1, 0, 1}]]

False

>> ImageQ["abc"]

False

ImageReflect

ImageReflect[image]
Flips image top to bottom.

ImageReflect[image, side]
Flips image so that side is interchanged
with its opposite.

ImageReflect[image, side_1 -> side_2]
Flips image so that side_1 is interchanged
with side_2.

>> ein = Import["ExampleData/
Einstein.jpg"];

>> ImageReflect[ein]
−Image−

>> ImageReflect[ein, Left]
−Image−

>> ImageReflect[ein, Left -> Top]
−Image−

158

ImageResize

ImageResize[image, width]
ImageResize[image, {width, height}]

>> ein = Import["ExampleData/
Einstein.jpg"];

>> ImageDimensions[ein]

{615, 768}

>> ImageResize[ein, {400, 600}]
−Image−

>> ImageResize[ein, 256]
−Image−

>> ImageDimensions[%]

{256, 320}

The default sampling method is Bicubic
>> ImageResize[ein, 256, Resampling

-> "Bicubic"]

−Image−

>> ImageResize[ein, 256, Resampling
-> "Nearest"]

−Image−

>> ImageResize[ein, 256, Resampling
-> "Gaussian"]

−Image−

ImageRotate

ImageRotate[image]
Rotates image 90 degrees counterclock-
wise.

ImageRotate[image, theta]
Rotates image by a given angle theta

>> ein = Import["ExampleData/
Einstein.jpg"];

>> ImageRotate[ein]
−Image−

>> ImageRotate[ein, 45 Degree]
−Image−

>> ImageRotate[ein, Pi / 2]
−Image−

ImageSubtract

ImageSubtract[image, expr_1, expr_2,
...]

subtracts all expr_i from image where each
expr_i must be an image or a real number.

>> i = Image[{{0, 0.5, 0.2, 0.1,
0.9}, {1.0, 0.1, 0.3, 0.8,
0.6}}];

>> ImageSubtract[i, 0.2]
−Image−

>> ImageSubtract[i, i]
−Image−

ImageTake

ImageTake[image, n]
gives the first n rows of image.

ImageTake[image, -n]
gives the last n rows of image.

ImageTake[image, {r1, r2}]
gives rows r1, ..., r2 of image.

ImageTake[image, {r1, r2}, {c1, c2}]
gives a cropped version of image.

ImageType

ImageType[image]
gives the interval storage type of image,
e.g. “Real”, “Bit32”, or “Bit”.

>> img = Import["ExampleData/lena.
tif"];

>> ImageType[img]
Byte

>> ImageType[Image[{{0, 1}, {1,
0}}]]

Real

159

>> ImageType[Binarize[img]]
Bit

MaxFilter

MaxFilter[image, r]
gives image with a maximum filter of ra-
dius r applied on it. This always picks the
largest value in the filter’s area.

>> lena = Import["ExampleData/lena.
tif"];

>> MaxFilter[lena, 5]
−Image−

MedianFilter

MedianFilter[image, r]
gives image with a median filter of radius
r applied on it. This always picks the me-
dian value in the filter’s area.

>> lena = Import["ExampleData/lena.
tif"];

>> MedianFilter[lena, 5]
−Image−

MinFilter

MinFilter[image, r]
gives image with a minimum filter of ra-
dius r applied on it. This always picks
the smallest value in the filter’s area.

>> lena = Import["ExampleData/lena.
tif"];

>> MinFilter[lena, 5]
−Image−

Opening

Opening[image, ker]
Gives the morphological opening of im-
age with respect to structuring element
ker.

>> ein = Import["ExampleData/
Einstein.jpg"];

>> Opening[ein, 2.5]
−Image−

PixelValue

PixelValue[image, {x, y}]
gives the value of the pixel at position {x,
y} in image.

>> lena = Import["ExampleData/lena.
tif"];

>> PixelValue[lena, {1, 1}]
{0.321569, 0.0862745, 0.223529}

PixelValuePositions

PixelValuePositions[image, val]
gives the positions of all pixels in image
that have value val.

>> PixelValuePositions[Image[{{0,
1}, {1, 0}, {1, 1}}], 1]

{{1, 1} , {1, 2} , {2, 1} , {2, 3}}

>> PixelValuePositions[Image[{{0.2,
0.4}, {0.9, 0.6}, {0.3, 0.8}}],
0.5, 0.15]

{{2, 2} , {2, 3}}

>> img = Import["ExampleData/lena.
tif"];

>> PixelValuePositions[img, 3 /
255, 0.5 / 255]

{{180, 192, 2} , {181, 192, 2} ,
{181, 193, 2} , {188, 204, 2} ,
{265, 314, 2} , {364, 77, 2} , {365,
72, 2} , {365, 73, 2} , {365, 77,
2} , {366, 70, 2} , {367, 65, 2}}

>> PixelValue[img, {180, 192}]

{0.25098, 0.0117647, 0.215686}

160

RandomImage

RandomImage[max]
creates an image of random pixels with
values 0 to max.

RandomImage[{min, max}]
creates an image of random pixels with
values min to max.

RandomImage[..., size]
creates an image of the given size.

>> RandomImage[1, {100, 100}]
−Image−

Sharpen

Sharpen[image]
gives a sharpened version of image.

Sharpen[image, r]
sharpens image with a kernel of size r.

>> lena = Import["ExampleData/lena.
tif"];

>> Sharpen[lena]
−Image−

>> Sharpen[lena, 5]
−Image−

TextRecognize

TextRecognize[{image}]
Recognizes text in image and returns it as
string.

Threshold

Threshold[image]
gives a value suitable for binarizing im-
age.

The option “Method” may be “Cluster” (use
Otsu’s threshold), “Median”, or “Mean”.
>> img = Import["ExampleData/lena.

tif"];

>> Threshold[img]
0.456739

>> Binarize[img, %]
−Image−

>> Threshold[img, Method -> "Mean"]
0.486458

>> Threshold[img, Method -> "Median
"]

0.504726

WordCloud

WordCloud[{word1, word2, ...}]
Gives a word cloud with the given list of
words.

WordCloud[{weight1 -> word1, weight2 ->
word2, ...}]

Gives a word cloud with the words
weighted using the given weights.

WordCloud[{weight1, weight2, ...} -> {
word1, word2, ...}]

Also gives a word cloud with the words
weighted using the given weights.

WordCloud[{{word1, weight1}, {word2,
weight2}, ...}]

Gives a word cloud with the words
weighted using the given weights.

>> WordCloud[StringSplit[Import["
ExampleData/EinsteinSzilLetter.
txt"]]]

−Image−

>> WordCloud[Range[50] -> ToString
/@ Range[50]]

−Image−

Three-Dimensional Graphics
Three-Dimensional Graphic

161

Cuboid

Cuboid[{xmin, ymin, zmin}]
is a unit cube.

Cuboid[{xmin, ymin, zmin}, {xmax,
ymax, zmax}]

represents a cuboid extending from
{xmin, ymin, zmin} to {xmax, ymax, zmax}.

>> Graphics3D[Cuboid[{0, 0, 1}]]

>> Graphics3D[{Red, Cuboid[{0, 0,
0}, {1, 1, 0.5}], Blue, Cuboid
[{0.25, 0.25, 0.5}, {0.75, 0.75,
1}]}]

Cylinder

Cylinder[{{x1, y1, z1}, {x2, y2, z2}}]
represents a cylinder of radius 1.

Cylinder[{{x1, y1, z1}, {x2, y2, z2}},
r]

is a cylinder of radius r starting at (x1, y1,
z1) and ending at (x2, y2, z2).

Cylinder[{{x1, y1, z1}, {x2, y2, z2},
... }, r]

is a collection cylinders of radius r

>> Graphics3D[Cylinder[{{0, 0, 0},
{1, 1, 1}}, 1]]

>> Graphics3D[{Yellow, Cylinder
[{{-1, 0, 0}, {1, 0, 0}, {0, 0,
Sqrt[3]}, {1, 1, Sqrt[3]}}, 1]}]

162

Graphics3D

Graphics3D[primitives, options]
represents a three-dimensional graphic.

See also the Section “Plotting” for a list of Plot
options.

>> Graphics3D[Polygon[{{0,0,0},
{0,1,1}, {1,0,0}}]]

In TeXForm, Graphics3D creates Asymptote fig-
ures:

>> Graphics3D[Sphere[]] // TeXForm

\begin{asy}
import three;
import solids;
size(6.6667cm, 6.6667cm);
currentprojection=perspective(2.6,-4.8,4.0);
currentlight=light(rgb(0.5,0.5,1),
specular=red, (2,0,2), (2,2,2), (0,2,2));
// Sphere3DBox
draw(surface(sphere((0, 0, 0), 1)),
rgb(1,1,1));
draw(((-1,-1,-1)–(1,-1,-1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,1,-1)–(1,1,-1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,-1,1)–(1,-1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,1,1)–(1,1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,-1,-1)–(-1,1,-1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((1,-1,-1)–(1,1,-1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,-1,1)–(-1,1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((1,-1,1)–(1,1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,-1,-1)–(-1,-1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((1,-1,-1)–(1,-1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((-1,1,-1)–(-1,1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
draw(((1,1,-1)–(1,1,1)), rgb(0.4, 0.4,
0.4)+linewidth(1));
\end{asy}

163

Sphere

Sphere[{x, y, z}]
is a sphere of radius 1 centered at the
point {x, y, z}.

Sphere[{x, y, z}, r]
is a sphere of radius r centered at the
point {x, y, z}.

Sphere[{{x1, y1, z1}, {x2, y2, z2}, ...
}, r]

is a collection spheres of radius r centered
at the points {x1, y2, z2}, {x2, y2, z2}, ...

>> Graphics3D[Sphere[{0, 0, 0}, 1]]

>> Graphics3D[{Yellow, Sphere[{{-1,
0, 0}, {1, 0, 0}, {0, 0, Sqrt

[3.]}}, 1]}]

Plotting Data
Plotting Data
Plotting functions take a function as a parameter
and data, often a range of points, as another pa-
rameter, and plot or show the function applied
to the data.

BarChart

BarChart[{b1, b2 ...}]
makes a bar chart with lengths b1, b2,

Drawing options include - Charting:

• Mesh
• PlotRange
• ChartLabels
• ChartLegends
• ChartStyle

BarChart specific:
• Axes (default {False, True})
• AspectRatio: (default 1 / GoldenRatio)

A bar chart of a list of heights:
>> BarChart[{1, 4, 2}]

1

2

3

4

>> BarChart[{1, 4, 2}, ChartStyle
-> {Red, Green, Blue}]

1

2

3

4

164

>> BarChart[{{1, 2, 3}, {2, 3, 4}}]

1

2

3

4

Chart several datasets with categorical labels:
>> BarChart[{{1, 2, 3}, {2, 3, 4}},

ChartLabels -> {"a", "b", "c"}]

a b c a b c

1

2

3

4

>> BarChart[{{1, 5}, {3, 4}},
ChartStyle -> {{EdgeForm[Thin],
White}, {EdgeForm[Thick], White
}}]

1

2

3

4

5

ColorData

ColorData["name"]
returns a color function with the given
name.

Define a user-defined color function:
>> Unprotect[ColorData]; ColorData

["test"] := ColorDataFunction["
test", "Gradients", {0, 1},
Blend[{Red, Green, Blue}, #1]
&]; Protect[ColorData]

Compare it to the default color function,
LakeColors:
>> {DensityPlot[x + y, {x, -1, 1},

{y, -1, 1}], DensityPlot[x + y,
{x, -1, 1}, {y, -1, 1},
ColorFunction->"test"]}

,

DensityPlot

DensityPlot[f , {x, xmin, xmax}, {y,
ymin, ymax}]

plots a density plot of f with x ranging
from xmin to xmax and y ranging from
ymin to ymax.

165

>> DensityPlot[x ^ 2 + 1 / y, {x,
-1, 1}, {y, 1, 4}]

>> DensityPlot[1 / x, {x, 0, 1}, {y
, 0, 1}]

>> DensityPlot[Sqrt[x * y], {x, -1,
1}, {y, -1, 1}]

>> DensityPlot[1/(x^2 + y^2 + 1), {
x, -1, 1}, {y, -2,2}, Mesh->Full
]

>> DensityPlot[x^2 y, {x, -1, 1}, {
y, -1, 1}, Mesh->All]

Histogram

Histogram[{x1, x2 ...}]
plots a histogram using the values x1, x2,
....

166

>> Histogram[{3, 8, 10, 100, 1000,
500, 300, 200, 10, 20, 200, 100,
200, 300, 500}]

200 400 600 800 1000

2

4

6

8

10

12

>> Histogram[{{1, 2, 10, 5, 50,
20}, {90, 100, 101, 120, 80}}]

20 40 60 80 100 120

1

2

3

4

5

ListLinePlot

ListLinePlot[{y_1, y_2, ...}]
plots a line through a list of y-values, as-
suming integer x-values 1, 2, 3, ...

ListLinePlot[{{x_1, y_1}, {x_2, y_2},
...}]

plots a line through a list of x, y pairs.
ListLinePlot[{list_1, list_2, ...}]

plots several lines.

ListPlot accepts a superset of the Graphics op-
tions.
>> ListLinePlot[Table[{n, n ^ 0.5},

{n, 10}]]

4 6 8 10

1.5

2.0

2.5

3.0

>> ListLinePlot[{{-2, -1}, {-1,
-1}}]

−1.8 −1.6 −1.4 −1.2 −1.0

−2.0

−1.5

−1.0

−0.5

ListPlot

ListPlot[{y_1, y_2, ...}]
plots a list of y-values, assuming integer
x-values 1, 2, 3, ...

ListPlot[{{x_1, y_1}, {x_2, y_2},
...}]

plots a list of x, y pairs.
ListPlot[{list_1, list_2, ...}]

plots several lists of points.

ListPlot accepts a superset of the Graphics op-
tions.
>> ListPlot[Table[n ^ 2, {n, 10}]]

4 6 8 10

20

40

60

80

100

167

ParametricPlot

ParametricPlot[{f_x, f_y}, {u, umin,
umax}]

plots a parametric function f with the pa-
rameter u ranging from umin to umax.

ParametricPlot[{{f_x, f_y}, {g_x, g_y},
...}, {u, umin, umax}]

plots several parametric functions f, g, ...
ParametricPlot[{f_x, f_y}, {u, umin,
umax}, {v, vmin, vmax}]

plots a parametric area.
ParametricPlot[{{f_x, f_y}, {g_x, g_y},
...}, {u, umin, umax}, {v, vmin,

vmax}]
plots several parametric areas.

>> ParametricPlot[{Sin[u], Cos[3 u
]}, {u, 0, 2 Pi}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

>> ParametricPlot[{Cos[u] / u, Sin[
u] / u}, {u, 0, 50}, PlotRange
->0.5]

−0.4 −0.2 0.2 0.4

−0.4

−0.2

0.2

0.4

>> ParametricPlot[{{Sin[u], Cos[u
]},{0.6 Sin[u], 0.6 Cos[u]},
{0.2 Sin[u], 0.2 Cos[u]}}, {u,
0, 2 Pi}, PlotRange->1,
AspectRatio->1]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

PieChart

PieChart[{a1, a2 ...}]
draws a pie chart with sector angles pro-
portional to a1, a2,

Drawing options include - Charting:
• Mesh
• PlotRange
• ChartLabels
• ChartLegends
• ChartStyle

PieChart specific:
• Axes (default: False, False)
• AspectRatio (default 1)
• SectorOrigin: (default {Automatic, 0})
• SectorSpacing" (default Automatic)

A hypothetical comparsion between types of
pets owned:

168

>> PieChart[{30, 20, 10},
ChartLabels -> {Dogs, Cats, Fish
}]

Dogs

Cats
Fish

A doughnut chart for a list of values:
>> PieChart[{8, 16, 2},

SectorOrigin -> {Automatic,
1.5}]

A Pie chart with multple datasets:
>> PieChart[{{10, 20, 30}, {15, 22,

30}}]

Same as the above, but without gaps between
the groups of data:
>> PieChart[{{10, 20, 30}, {15, 22,

30}}, SectorSpacing -> None]

The doughnut chart above with labels on each of
the 3 pieces:
>> PieChart[{{10, 20, 30}, {15, 22,

30}}, ChartLabels -> {A, B, C}]

A

B

C

A B

C

Negative values are removed, the data below is
the same as {1, 3}:

169

>> PieChart[{1, -1, 3}]

Plot

Plot[f , {x, xmin, xmax}]
plots f with x ranging from xmin to xmax.

Plot[{f1, f2, ...}, {x, xmin, xmax}]
plots several functions f1, f2, ...

>> Plot[{Sin[x], Cos[x], x / 3}, {x
, -Pi, Pi}]

−3 −2 −1 1 2 3

−1.0

−0.5

0.5

1.0

>> Plot[Sin[x], {x, 0, 4 Pi},
PlotRange->{{0, 4 Pi}, {0,
1.5}}]

2 4 6 8 10 12

0.5

1.0

1.5

>> Plot[Tan[x], {x, -6, 6}, Mesh->
Full]

−6 −4 −2 2 4 6

−15

−10

−5

5

10

15

>> Plot[x^2, {x, -1, 1},
MaxRecursion->5, Mesh->All]

−1.0 −0.5 0.5 1.0

0.2

0.4

0.6

0.8

>> Plot[Log[x], {x, 0, 5},
MaxRecursion->0]

1 2 3 4 5

−1.0

−0.5

0.5

1.0

1.5

>> Plot[Tan[x], {x, 0, 6}, Mesh->
All, PlotRange->{{-1, 5}, {0,
15}}, MaxRecursion->10]

−1 1 2 3 4 5

5

10

15

A constant function:

170

>> Plot[3, {x, 0, 1}]

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

Plot3D

Plot3D[f , {x, xmin, xmax}, {y, ymin,
ymax}]

creates a three-dimensional plot of f with
x ranging from xmin to xmax and y rang-
ing from ymin to ymax.

Plot3D has the same options as Graphics3D, in
particular:

• Mesh
• PlotPoints
• MaxRecursion

>> Plot3D[x ^ 2 + 1 / y, {x, -1,
1}, {y, 1, 4}]

>> Plot3D[Sin[y + Sin[3 x]], {x,
-2, 2}, {y, -2, 2}, PlotPoints
->20]

>> Plot3D[x / (x ^ 2 + y ^ 2 + 1),
{x, -2, 2}, {y, -2, 2}, Mesh->
None]

>> Plot3D[Sin[x y] /(x y), {x, -3,
3}, {y, -3, 3}, Mesh->All]

171

>> Plot3D[Log[x + y^2], {x, -1, 1},
{y, -1, 1}]

PolarPlot

PolarPlot[r, {t, t_min, t_max}]
creates a polar plot of curve with radius
r as a function of angle t ranging from
t_min to t_max.

In a Polar Plot, a polar coordinate system is used.
A polar coordinate system is a two-dimensional
coordinate system in which each point on a
plane is determined by a distance from a refer-
ence point and an angle from a reference direc-
tion.
Here is a 5-blade propeller, or maybe a flower,
using PolarPlot:
>> PolarPlot[Cos[5t], {t, 0, Pi}]

−0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

The number of blades and be change by adjust-
ing the t multiplier.
A slight change adding Abs turns this a clump of
grass:

>> PolarPlot[Abs[Cos[5t]], {t, 0,
Pi}]

−1.0 −0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Coils around a ring:
>> PolarPlot[{1, 1 + Sin[20 t] /

5}, {t, 0, 2 Pi}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

A spring having 16 turns:
>> PolarPlot[Sqrt[t], {t, 0, 16 Pi

}]

−5 5

−5

5

172

Splines
Splines
Splines are used both in graphics and computa-
tions.

BernsteinBasis

BernsteinBasis[d,n,x]
returns the nth Bernstein basis of degree
d at x.

A Bernstein polynomial is a polynomial that is a
linear combination of Bernstein basis polynomi-
als.
With the advent of computer graphics, Bernstein
polynomials, restricted to the interval [0, 1], be-
came important in the form of Bézier curves.
BernsteinBasis[d,n,x] equals Binomial[d, n
] x^n (1-x)^(d-n) in the interval [0, 1] and
zero elsewhere.
>> BernsteinBasis[4, 3, 0.5]

0.25

BezierCurve

BezierCurve[{pt_1, pt_2 ...}]
represents a Bézier curve with control
points p_i.

Option:
• SplineDegree->d specifies that the under-

lying polynomial basis should have maxi-
mal degree d.

Set up some points...
>> pts = {{0, 0}, {1, 1}, {2, -1},

{3, 0}, {5, 2}, {6, -1}, {7,
3}};

=
A composite Bézier curve and its control points:

>> Graphics[{BezierCurve[pts],
Green, Line[pts], Red, Point[pts
]}]

=

BezierFunction

BezierFunction[{pt_1, pt_2, ...}]
returns a Bézier function for the curve
defined by points pt_i. The embed-
ding dimension for the curve represented
by BezierFunction[{pt_1,pt_2,...}] is
given by the length of the lists pt_i.

>> f = BezierFunction[{{0, 0}, {1,
1}, {2, 0}, {3, 2}}];

=
>> f[.5]

{1.5, 0.625}

=
Plotting the Bézier Function accoss a Bézier
curve:
>> Module[{p={{0, 0},{1, 1},{2,

-1},{4, 0}}}, Graphics[{
BezierCurve[p], Red, Point[Table
[BezierFunction[p][x], {x, 0, 1,
0.1}]]}]]

173

26. Input/Output, Files, and Filesystem

Contents

File and Stream
Operations 175
BinaryRead 175
BinaryWrite 176
Byte 176
Character 176
Close 176
EndOfFile 176
Expression 176
FilePrint 176
Find 177
Get (<<) 177
$Input 177
$InputFileName . 177
InputStream . . . 177
Number 177
OpenAppend . . . 177
OpenRead 178
OpenWrite 178
OutputStream . . 178
Put (>>) 178
PutAppend (>>>) . 178
Read 179
ReadList 179
Record 180
SetStreamPosition 180
Skip 180
StreamPosition . . 180
Streams 181
StringToStream . . 181
Word 181
Write 181
WriteString 181

Filesystem Operations 182
AbsoluteFileName 182
$BaseDirectory . . 182
CopyDirectory . . 182

CopyFile 182
CreateDirectory . 182
CreateFile 182
CreateTemporary . 182
DeleteDirectory . . 182
DeleteFile 183
Directory 183
DirectoryName . . 183
DirectoryQ 183
DirectoryStack . . 183
ExpandFileName . 183
FileBaseName . . 183
FileByteCount . . 183
FileDate 184
FileExistsQ 184
FileExtension . . . 184
FileHash 184
FileInformation . . 185
FileNameDepth . 185
FileNameJoin . . . 185
FileNameSplit . . 185
FileNameTake . . 185
FileNames 186
FileType 186
FindFile 186
FindList 186
$HomeDirectory . 186
$InitialDirectory . 186
$InstallationDirec-

tory 187
Needs 187
$OperatingSystem 187
ParentDirectory . 187
$Path 187
$PathnameSepara-

tor 187
RenameDirectory . 187
RenameFile 187

ResetDirectory . . 187
$RootDirectory . . 188
SetDirectory . . . 188
SetFileDate 188
$TemporaryDirec-

tory 188
ToFileName . . . 188
URLSave 188
$UserBaseDirectory 188

Importing and Exporting 188
B64Decode 188
B64Encode 189
RemoveLin-

earSyntax . 189
$extensionMap-

pings . . . 189
$formatMappings 189
Export 189
$ExportFormats . 189
ExportString . . . 190
FileFormat 190
Import 190
$ImportFormats . 190
ImportString . . . 191
RegisterExport . . 191
RegisterImport . . 192
URLFetch 192

The Main Loop 193
$HistoryLength . . 193
$Post 193
$Pre 193
$PrePrint 193
$PreRead 193
$SyntaxHandler . 193
In 194
$Line 194
Out 194

174

File and Stream Operations
File and Stream Operation

BinaryRead

BinaryRead[stream]
reads one byte from the stream as an in-
teger from 0 to 255.

BinaryRead[stream, type]
reads one object of specified type from
the stream.

BinaryRead[stream, {type1, type2, ...}]
reads a sequence of objects of specified
types.

>> strm = OpenWrite[BinaryFormat ->
True]

OutputStream
[

/tmp/tmpgcvj97kh, 153
]

>> BinaryWrite[strm, {97, 98, 99}]

OutputStream
[

/tmp/tmpgcvj97kh, 153
]

>> Close[strm]
/tmp/tmpgcvj97kh

>> strm = OpenRead[%, BinaryFormat
-> True]

InputStream
[

/tmp/tmpgcvj97kh, 154
]

>> BinaryRead[strm, {"Character8",
"Character8", "Character8"}]

{a, b, c}

>> Close[strm];

BinaryWrite

BinaryWrite[channel, b]
writes a single byte given as an integer
from 0 to 255.

BinaryWrite[channel, {b1, b2, ...}]
writes a sequence of byte.

BinaryWrite[channel, ‘‘string’]’
writes the raw characters in a string.

BinaryWrite[channel, x, type]
writes x as the specified type.

BinaryWrite[channel, {x1, x2, ...},
type]

writes a sequence of objects as the speci-
fied type.

BinaryWrite[channel, {x1, x2, ...}, {
type1, type2, ...}]

writes a sequence of objects using a se-
quence of specified types.

>> strm = OpenWrite[BinaryFormat ->
True]

>> BinaryWrite[strm, {39, 4, 122}]

OutputStream
[

/tmp/tmpaqi9yveh, 273
]

>> Close[strm]

>> strm = OpenRead[%, BinaryFormat
-> True]

>> BinaryRead[strm]
39

>> BinaryRead[strm, "Byte"]
4

>> BinaryRead[strm, "Character8"]
z

>> Close[strm];

Write a String
>> strm = OpenWrite[BinaryFormat ->

True]

>> BinaryWrite[strm, "abc123"]

OutputStream
[

/tmp/tmpnmfc1ofe, 275
]

>> Close[%]

Read as Bytes

175

>> strm = OpenRead[%, BinaryFormat
-> True]

>> BinaryRead[strm, {"Character8",
"Character8", "Character8", "
Character8", "Character8", "
Character8", "Character8"}]

{a, b, c, 1, 2, 3, EndOfFile}

>> Close[strm]

Read as Characters
>> strm = OpenRead[%, BinaryFormat

-> True]

>> BinaryRead[strm, {"Byte", "Byte
", "Byte", "Byte", "Byte", "Byte
", "Byte"}]

{97, 98, 99, 49, 50, 51, EndOfFile}

>> Close[strm]

Write Type
>> strm = OpenWrite[BinaryFormat ->

True]

>> BinaryWrite[strm, 97, "Byte"]

OutputStream
[

/tmp/tmpbgwzsftj, 278
]

>> BinaryWrite[strm, {97, 98, 99},
{"Byte", "Byte", "Byte"}]

OutputStream
[

/tmp/tmpbgwzsftj, 278
]

>> Close[%]

Byte

Byte
is a data type for Read.

Character

Character
is a data type for Read.

Close

Close[stream]
closes an input or output stream.

>> Close[StringToStream["123abc"]]
String

>> Close[OpenWrite[]]

/tmp/tmpu73w24xh

EndOfFile

EndOfFile
is returned by Read when the end of an
input stream is reached.

Expression

Expression
is a data type for Read.

FilePrint

FilePrint[file]
prints the raw contents of file.

Find

Find[stream, text]
find the first line in stream that contains
text.

>> stream = OpenRead["ExampleData/
EinsteinSzilLetter.txt"];

>> Find[stream, "uranium"]

>> Find[stream, "uranium"]

>> Close[stream]

>> stream = OpenRead["ExampleData/
EinsteinSzilLetter.txt"];

>> Find[stream, {"energy", "power"}
]

176

>> Find[stream, {"energy", "power"}
]

>> Close[stream]

Get (<<)

<<name
reads a file and evaluates each expres-
sion, returning only the last one.

Get[name, Trace->True]
Runs Get tracing each line before it is
evaluated.

>> filename = $TemporaryDirectory
<> "/example_file";

>> Put[x + y, filename]

>> Get[filename]

>> filename = $TemporaryDirectory
<> "/example_file";

>> Put[x + y, 2x^2 + 4z!, Cos[x] +
I Sin[x], filename]

>> Get[filename]

>> DeleteFile[filename]

$Input

$Input
is the name of the stream from which in-
put is currently being read.

>> $Input

$InputFileName

$InputFileName
is the name of the file from which input is
currently being read.

While in interactive mode, $InputFileName is
“”.
>> $InputFileName

InputStream

InputStream[name, n]
represents an input stream.

>> stream = StringToStream["Mathics
is cool!"]

InputStream
[
String, 294

]
>> Close[stream]

String

Number

Number
is a data type for Read.

OpenAppend

OpenAppend[‘‘file’]’
opens a file and returns an OutputStream
to which writes are appended.

>> OpenAppend[]

OutputStream
[

/tmp/tmp788p0opa, 297
]

OpenRead

OpenRead[‘‘file’]’
opens a file and returns an InputStream.

>> OpenRead["ExampleData/
EinsteinSzilLetter.txt"]

InputStream
[

ExampleData/EinsteinSzilLetter.txt,
301

]
>> OpenRead["https://raw.

githubusercontent.com/mathics/
Mathics/master/README.rst"]

InputStream
[

https://raw.githubusercontent.com/mathics/Mathics/master/README.rst,
302

]

177

>> Close[%];

OpenWrite

OpenWrite[‘‘file’]’
opens a file and returns an Output-
Stream.

>> OpenWrite[]

OutputStream
[

/tmp/tmpucjb9hco, 305
]

OutputStream

OutputStream[name, n]
represents an output stream.

>> OpenWrite[]

OutputStream
[

/tmp/tmp48v0lhqm, 307
]

>> Close[%]
/tmp/tmp48v0lhqm

Put (>>)

expr >> filename
write expr to a file.

Put[expr1, expr2, ..., filename]
write a sequence of expressions to a file.

>> Put[40!, fortyfactorial]

f orty f actorialisnotstring,
InputStream[], orOutputStream[]

815 915 283 247 897 734 345 ˜
˜611 269 596 115 894 272 ˜
˜000 000 000»fortyfactorial

>> filename = $TemporaryDirectory
<> "/fortyfactorial";

>> Put[40!, filename]

>> FilePrint[filename]

>> Get[filename]
815 915 283 247 897 734 345 611 ˜

˜269 596 115 894 272 000 000 000

>> DeleteFile[filename]

>> filename = $TemporaryDirectory
<> "/fiftyfactorial";

>> Put[10!, 20!, 30!, filename]

>> FilePrint[filename]

>> DeleteFile[filename]

=
>> filename = $TemporaryDirectory

<> "/example_file";

>> Put[x + y, 2x^2 + 4z!, Cos[x] +
I Sin[x], filename]

>> FilePrint[filename]

>> DeleteFile[filename]

PutAppend (>>>)

expr >>> filename
append expr to a file.

PutAppend[expr1, expr2, ..., $‘‘
filename’$]’

write a sequence of expressions to a file.

>> Put[50!, "factorials"]

>> FilePrint["factorials"]

>> PutAppend[10!, 20!, 30!, "
factorials"]

>> FilePrint["factorials"]

>> 60! >>> "factorials"

>> FilePrint["factorials"]

>> "string" >>> factorials

>> FilePrint["factorials"]

178

Read

Read[stream]
reads the input stream and returns one
expression.

Read[stream, type]
reads the input stream and returns an ob-
ject of the given type.

Read[stream, type]
reads the input stream and returns an ob-
ject of the given type.

Read[stream, Hold[Expression]]
reads the input stream for an Expression
and puts it inside Hold.

type is one of:

• Byte
• Character
• Expression
• HoldExpression
• Number
• Real
• Record
• String
• Word

>> stream = StringToStream["abc123
"];

>> Read[stream, String]

abc123

>> stream = StringToStream["abc
123"];

>> Read[stream, Word]

>> Read[stream, Word]

>> stream = StringToStream["123,
4"];

>> Read[stream, Number]

>> Read[stream, Number]

>> stream = StringToStream["2+2\n2
+3"];

Read with a Hold[Expression] returns the ex-
pression it reads unevaluated so it can be later
inspected and evaluated:
>> Read[stream, Hold[Expression]]

>> Read[stream, Expression]
5

>> Close[stream];

Reading a comment however will return the
empy list:
>> stream = StringToStream["(* ::

Package:: *)"];

>> Read[stream, Hold[Expression]]

>> Close[stream];

>> stream = StringToStream["123 abc
"];

>> Read[stream, {Number, Word}]
{123, abc}

Multiple lines:
>> stream = StringToStream["\"Tengo

una\nvaca lechera.\""]; Read[
stream]

Tengo una
vaca lechera.

ReadList

ReadList["file"]
Reads all the expressions until the end of
file.

ReadList["file", type]
Reads objects of a specified type until the
end of file.

ReadList["file", {type1, type2, ...}]
Reads a sequence of specified types until
the end of file.

>> ReadList[StringToStream["a 1 b
2"], {Word, Number}]

{{a, 1} , {b, 2}}

>> stream = StringToStream["\"
abc123\""];

>> ReadList[stream]
{abc123}

>> InputForm[%]

{"abc123"}

179

Record

Record
is a data type for Read.

SetStreamPosition

SetStreamPosition[stream, n]
sets the current position in a stream.

>> stream = StringToStream["Mathics
is cool!"]

InputStream
[
String, 352

]
>> SetStreamPosition[stream, 8]

8

>> Read[stream, Word]
is

>> SetStreamPosition[stream,
Infinity]

16

Skip

Skip[stream, type]
skips ahead in an input steream by one
object of the specified type.

Skip[stream, type, n]
skips ahead in an input steream by n ob-
jects of the specified type.

>> stream = StringToStream["a b c d
"];

>> Read[stream, Word]

>> Skip[stream, Word]

>> Read[stream, Word]

>> stream = StringToStream["a b c d
"];

>> Read[stream, Word]

>> Skip[stream, Word, 2]

>> Read[stream, Word]

StreamPosition

StreamPosition[stream]
returns the current position in a stream as
an integer.

>> stream = StringToStream["Mathics
is cool!"]

InputStream
[
String, 358

]
>> Read[stream, Word]

Mathics

>> StreamPosition[stream]
7

Streams

Streams[]
returns a list of all open streams.

180

>> Streams[]{
InputStream [stdin, 0] ,

OutputStream [stdout, 1] ,
OutputStream [stderr, 2] ,
OutputStream

[
/tmp/tmp788p0opa,

297
]

, InputStream
[

/src/external-vcs/github/mathics/Mathics/mathics/data/ExampleData/EinsteinSzilLetter.txt,
301

]
, OutputStream

[
/tmp/tmpucjb9hco,
305

]
, InputStream

[
String, 326

]
, InputStream

[
String, 338

]
, InputStream

[
String, 339

]
, InputStream

[
String, 340

]
, InputStream

[
String, 341

]
, InputStream

[
String, 344

]
, InputStream

[
String, 345

]
, InputStream

[
String, 346

]
, InputStream

[
String, 348

]
, InputStream

[
String, 349

]
, InputStream

[
String, 350

]
, InputStream

[
String, 351

]
, InputStream

[
String, 352

]
, InputStream

[
String, 355

]
, InputStream

[
String, 356

]
, InputStream

[
String, 357

]
, InputStream

[
String, 358

]
, OutputStream

[
/tmp/tmpxcye7a9x, 359

]}
>> Streams["stdout"]

{OutputStream [stdout, 1]}

StringToStream

StringToStream[string]
converts a string to an open input stream.

>> strm = StringToStream["abc 123"]

InputStream
[
String, 361

]

Word

Word
is a data type for Read.

Write

Write[channel, expr1, expr2, ...]
writes the expressions to the output chan-
nel followed by a newline.

>> stream = OpenWrite[]

OutputStream
[

/tmp/tmp5y9m8m8l, 364
]

>> Write[stream, 10 x + 15 y ^ 2]

>> Write[stream, 3 Sin[z]]

>> Close[stream]
/tmp/tmp5y9m8m8l

>> stream = OpenRead[%];

>> ReadList[stream]{
10x + 15y2, 3Sin [z]

}

WriteString

WriteString[stream, $str1, str2, ...]
writes the strings to the output stream.

>> stream = OpenWrite[];

>> WriteString[stream, "This is a
test 1"]

>> WriteString[stream, "This is
also a test 2"]

>> Close[stream]

>> FilePrint[%]

>> stream = OpenWrite[];

>> WriteString[stream, "This is a
test 1", "This is also a test
2"]

>> Close[stream]

>> FilePrint[%]

181

Filesystem Operations
Filesystem Operation

AbsoluteFileName

AbsoluteFileName["name"]
returns the absolute version of the given
filename.

>> AbsoluteFileName["ExampleData/
sunflowers.jpg"]

/src/external-vcs/github/mathics/Mathics/mathics/data/ExampleData/sunflowers.jpg

$BaseDirectory

$UserBaseDirectory
returns the folder where user configura-
tions are stored.

>> $RootDirectory

/

CopyDirectory

CopyDirectory["dir1‘‘,”dir2"]
copies directory dir1 to dir2.

CopyFile

CopyFile["file1‘‘,”file2"]
copies file1 to file2.

>> CopyFile["ExampleData/sunflowers
.jpg", "MathicsSunflowers.jpg"]

MathicsSunflowers.jpg

>> DeleteFile["MathicsSunflowers.
jpg"]

CreateDirectory

CreateDirectory["dir"]
creates a directory called dir.

CreateDirectory[]
creates a temporary directory.

>> dir = CreateDirectory[]

/tmp/mmri3vxqv

CreateFile

CreateFile[‘‘filename’]’
Creates a file named “filename” tempo-
rary file, but do not open it.

CreateFile[]
Creates a temporary file, but do not open
it.

CreateTemporary

CreateTemporary[]
Creates a temporary file, but do not open
it.

DeleteDirectory

DeleteDirectory["dir"]
deletes a directory called dir.

>> dir = CreateDirectory[]

/tmp/mh055p76q

>> DeleteDirectory[dir]

>> DirectoryQ[dir]

False

DeleteFile

Delete["file"]
deletes file.

Delete[{"file1‘‘,”file2", ...}]
deletes a list of files.

182

>> CopyFile["ExampleData/sunflowers
.jpg", "MathicsSunflowers.jpg"];

>> DeleteFile["MathicsSunflowers.
jpg"]

>> CopyFile["ExampleData/sunflowers
.jpg", "MathicsSunflowers1.jpg
"];

>> CopyFile["ExampleData/sunflowers
.jpg", "MathicsSunflowers2.jpg
"];

>> DeleteFile[{"MathicsSunflowers1.
jpg", "MathicsSunflowers2.jpg"}]

Directory

Directory[]
returns the current working directory.

>> Directory[]

/src/external-vcs/github/mathics/Mathics/mathics

DirectoryName

DirectoryName["name"]
extracts the directory name from a file-
name.

>> DirectoryName["a/b/c"]

a/b

>> DirectoryName["a/b/c", 2]
a

DirectoryQ

DirectoryQ["name"]
returns True if the directory called name
exists and False otherwise.

>> DirectoryQ["ExampleData/"]
True

>> DirectoryQ["ExampleData/
MythicalSubdir/"]

False

DirectoryStack

DirectoryStack[]
returns the directory stack.

>> DirectoryStack[]

{/src/external-vcs/github/mathics/Mathics/mathics}

ExpandFileName

ExpandFileName["name"]
expands name to an absolute filename for
your system.

>> ExpandFileName["ExampleData/
sunflowers.jpg"]

/src/external-vcs/github/mathics/Mathics/mathics/ExampleData/sunflowers.jpg

FileBaseName

FileBaseName["file"]
gives the base name for the specified file
name.

>> FileBaseName["file.txt"]
file

>> FileBaseName["file.tar.gz"]

file.tar

FileByteCount

FileByteCount[file]
returns the number of bytes in file.

>> FileByteCount["ExampleData/
sunflowers.jpg"]

142 286

FileDate

FileDate[file, types]
returns the time and date at which the file
was last modified.

183

>> FileDate["ExampleData/sunflowers
.jpg"]

{2 120, 9, 7, 7, 16, 33.2822}

>> FileDate["ExampleData/sunflowers
.jpg", "Access"]

{2 121, 7, 31, 23, 35, 32.6415}

>> FileDate["ExampleData/sunflowers
.jpg", "Creation"]

Missing
[
NotApplicable

]
>> FileDate["ExampleData/sunflowers

.jpg", "Change"]

{2 120, 9, 7, 7, 16, 33.2822}

>> FileDate["ExampleData/sunflowers
.jpg", "Modification"]

{2 120, 9, 7, 7, 16, 33.2822}

>> FileDate["ExampleData/sunflowers
.jpg", "Rules"]{

Access− > {2 121, 7, 31, 23, 35,
32.6415} , Creation− > Missing

[
NotApplicable

]
, Change− > {

2 120, 9, 7, 7, 16, 33.282˜
˜2} , Modification− > {
2 120, 9, 7, 7, 16, 33.2822}

}

FileExistsQ

FileExistsQ["file"]
returns True if file exists and False other-
wise.

>> FileExistsQ["ExampleData/
sunflowers.jpg"]

True

>> FileExistsQ["ExampleData/
sunflowers.png"]

False

FileExtension

FileExtension["file"]
gives the extension for the specified file
name.

>> FileExtension["file.txt"]
txt

>> FileExtension["file.tar.gz"]
gz

FileHash

FileHash[file]
returns an integer hash for the given file.

FileHash[file, type]
returns an integer hash of the specified
type for the given file.
The types supported are “MD5”,
“Adler32”, “CRC32”, “SHA”, “SHA224”,
“SHA256”, “SHA384”, and “SHA512”.

FileHash[file, type, format]
gives a hash code in the specified format.

>> FileHash["ExampleData/sunflowers
.jpg"]

109 937 059 621 979 839 ˜
˜952 736 809 235 486 742 106

>> FileHash["ExampleData/sunflowers
.jpg", "MD5"]

109 937 059 621 979 839 ˜
˜952 736 809 235 486 742 106

>> FileHash["ExampleData/sunflowers
.jpg", "Adler32"]

1 607 049 478

>> FileHash["ExampleData/sunflowers
.jpg", "SHA256"]

111 619 807 552 579 450 300 684 600 ˜
˜241 129 773 909 359 865 098 672 ˜
˜286 468 229 443 390 003 894 913 065

FileInformation

FileInformation["file"]
returns information about file.

This function is totally undocumented in MMA!

184

>> FileInformation["ExampleData/
sunflowers.jpg"]{

File

−>/src/external-vcs/github/mathics/Mathics/mathics/ExampleData/sunflowers.jpg,
FileType− > File, ByteCount− >

142 286, Date− > 6.96413 × 109
}

FileNameDepth

FileNameDepth["name"]
gives the number of path parts in the
given filename.

>> FileNameDepth["a/b/c"]
3

>> FileNameDepth["a/b/c/"]
3

FileNameJoin

FileNameJoin[{"dir_1‘‘,”dir_2", ...}]
joins the dir_i together into one path.

FileNameJoin[..., OperatingSystem->‘‘
os’]’

yields a file name in the format for
the specified operating system. Possible
choices are “Windows”, “MacOSX”, and
“Unix”.

>> FileNameJoin[{"dir1", "dir2", "
dir3"}]

dir1/dir2/dir3

>> FileNameJoin[{"dir1", "dir2", "
dir3"}, OperatingSystem -> "Unix
"]

dir1/dir2/dir3

>> FileNameJoin[{"dir1", "dir2", "
dir3"}, OperatingSystem -> "
Windows"]

dir1\dir2\dir3

FileNameSplit

FileNameSplit["filenames"]
splits a filename into a list of parts.

>> FileNameSplit["example/path/file
.txt"]

{example, path, file.txt}

FileNameTake

FileNameTake["file"]
returns the last path element in the file
name name.

FileNameTake["file", n]
returns the first n path elements in the file
name name.

FileNameTake["file", $-n$]
returns the last n path elements in the file
name name.

FileNames

FileNames[]
Returns a list with the filenames in the
current working folder.

FileNames[form]
Returns a list with the filenames in the
current working folder that matches with
form.

FileNames[{form_1, form_2, ...}]
Returns a list with the filenames in the
current working folder that matches with
one of form_1, form_2,

FileNames[{form_1, form_2, ...},{dir_1,
dir_2, ...}]

Looks into the directories dir_1, dir_2,
FileNames[{form_1, form_2, ...},{dir_1,
dir_2, ...}]

Looks into the directories dir_1, dir_2,
FileNames[{forms, dirs, n]

Look for files up to the level n.

>> SetDirectory[
$InstallationDirectory <> "/
autoload"];

>> FileNames["*.m", "formats"]//
Length

0

185

>> FileNames["*.m", "formats", 3]//
Length

15

>> FileNames["*.m", "formats",
Infinity]//Length

15

FileType

FileType["file"]
gives the type of a file, a string. This is
typically File, Directory or None.

>> FileType["ExampleData/sunflowers
.jpg"]

File

>> FileType["ExampleData"]
Directory

>> FileType["ExampleData/
nonexistant"]

None

FindFile

FindFile[name]
searches $Path for the given filename.

>> FindFile["ExampleData/sunflowers
.jpg"]

/src/external-vcs/github/mathics/Mathics/mathics/data/ExampleData/sunflowers.jpg

>> FindFile["VectorAnalysis‘"]

/src/external-vcs/github/mathics/Mathics/mathics/packages/VectorAnalysis/Kernel/init.m

>> FindFile["VectorAnalysis‘
VectorAnalysis‘"]

/src/external-vcs/github/mathics/Mathics/mathics/packages/VectorAnalysis/VectorAnalysis.m

FindList

FindList[file, text]
returns a list of all lines in file that contain
text.

FindList[file, {text1, text2, ...}]
returns a list of all lines in file that contain
any of the specified string.

FindList[{file1, file2, ...}, ...]
returns a list of all lines in any of the filei
that contain the specified strings.

>> stream = FindList["ExampleData/
EinsteinSzilLetter.txt", "
uranium"];

>> FindList["ExampleData/
EinsteinSzilLetter.txt", "
uranium", 1]

{in manuscript, leads me
to expect that the element
uranium may be turned into}

$HomeDirectory

$HomeDirectory
returns the users HOME directory.

>> $HomeDirectory

/home/rocky

$InitialDirectory

$InitialDirectory
returns the directory from which Mathics
was started.

>> $InitialDirectory

/src/external-vcs/github/mathics/Mathics/mathics

$InstallationDirectory

$InstallationDirectory
returns the top-level directory in which
Mathics was installed.

186

>> $InstallationDirectory

/src/external-vcs/github/mathics/Mathics/mathics

Needs

Needs["context‘"]
loads the specified context if not already
in $Packages.

>> Needs["VectorAnalysis‘"]

$OperatingSystem

$OperatingSystem
gives the type of operating system run-
ning Mathics.

>> $OperatingSystem
Unix

ParentDirectory

ParentDirectory[]
returns the parent of the current working
directory.

ParentDirectory["dir"]
returns the parent dir.

>> ParentDirectory[]

/src/external-vcs/github/mathics/Mathics/mathics

$Path

$Path
returns the list of directories to search
when looking for a file.

>> $Path
{., /home/rocky,
/src/external-vcs/github/mathics/Mathics/mathics/data,
/src/external-vcs/github/mathics/Mathics/mathics/packages}

$PathnameSeparator

$PathnameSeparator
returns a string for the seperator in paths.

>> $PathnameSeparator

/

RenameDirectory

RenameDirectory["dir1‘‘,”dir2"]
renames directory dir1 to dir2.

RenameFile

RenameFile["file1‘‘,”file2"]
renames file1 to file2.

>> CopyFile["ExampleData/sunflowers
.jpg", "MathicsSunflowers.jpg"]

MathicsSunflowers.jpg

>> RenameFile["MathicsSunflowers.
jpg", "MathicsSunnyFlowers.jpg"]

MathicsSunnyFlowers.jpg

>> DeleteFile["MathicsSunnyFlowers.
jpg"]

ResetDirectory

ResetDirectory[]
pops a directory from the directory stack
and returns it.

>> ResetDirectory[]

/src/external-vcs/github/mathics/Mathics/mathics/autoload

$RootDirectory

$RootDirectory
returns the system root directory.

>> $RootDirectory

/

187

SetDirectory

SetDirectory[dir]
sets the current working directory to dir.

>> SetDirectory[]

/home/rocky

SetFileDate

SetFileDate["file"]
set the file access and modification dates
of file to the current date.

SetFileDate["file", date]
set the file access and modification dates
of file to the specified date list.

SetFileDate["file", date, "type"]
set the file date of file to the specified date
list. The "type“ can be one of ”Access“,
”Creation“, ”Modification", or All.

Create a temporary file (for example purposes)
>> tmpfilename =

$TemporaryDirectory <> "/tmp0";

>> Close[OpenWrite[tmpfilename]];

>> SetFileDate[tmpfilename, {2002,
1, 1, 0, 0, 0.}, "Access"];

>> FileDate[tmpfilename, "Access"]

{2 002, 1, 1, 0, 0, 0.}

$TemporaryDirectory

$TemporaryDirectory
returns the directory used for temporary
files.

>> $TemporaryDirectory

/tmp

ToFileName

ToFileName[{"dir_1‘‘,”dir_2", ...}]
joins the dir_i together into one path.

ToFileName has been superseded by

FileNameJoin.
>> ToFileName[{"dir1", "dir2"}, "

file"]

dir1/dir2/file

>> ToFileName["dir1", "file"]
dir1/file

>> ToFileName[{"dir1", "dir2", "
dir3"}]

dir1/dir2/dir3

URLSave

URLSave[‘‘url’]’
Save “url” in a temporary file.

URLSave[‘‘url’,’ filename]
Save “url” in filename.

$UserBaseDirectory

$UserBaseDirectory
returns the folder where user configura-
tions are stored.

>> $RootDirectory

/

Importing and Exporting
Importing and Exporting

B64Decode

System‘Convert‘B64Dump‘B64Decode[
string]

Decode string in Base64 coding to an ex-
pression.

>> System‘Convert‘B64Dump‘B64Decode
["R!="]

String”R!
= ”isnotavalidb64encodedstring.

$Failed

188

B64Encode

System‘Convert‘B64Dump‘B64Encode[expr]
Encodes expr in Base64 coding

>> System‘Convert‘B64Dump‘B64Encode
["Hello world"]

SGVsbG8gd29ybGQ=

>> System‘Convert‘B64Dump‘B64Decode
[%]

>> System‘Convert‘B64Dump‘B64Encode
[Integrate[f[x],{x,0,2}]]

SW50ZWdyYXRlW2ZbeF0sIHt4LCAwLCAyfV0=

>> System‘Convert‘B64Dump‘B64Decode
[%]

RemoveLinearSyntax

System‘Convert‘CommonDump‘
RemoveLinearSyntax[something]

Keine anung... Undocumented in wma

$extensionMappings

$extensionMappings
Returns a list of associations between file
extensions and file types.

$formatMappings

$formatMappings
Returns a list of associations between file
extensions and file types.

Export

Export["file.ext", expr]
exports expr to a file, using the extension
ext to determine the format.

Export["file", expr, "format"]
exports expr to a file in the specified for-
mat.

Export["file", exprs, elems]
exports exprs to a file as elements speci-
fied by elems.

$ExportFormats

$ExportFormats
returns a list of file formats supported by
Export.

>> $ExportFormats

{BMP, Base64, CSV, GIF, JPEG,
JPEG2 000, PBM, PCX, PGM,
PNG, PPM, SVG, TIFF, Text, asy}

ExportString

ExportString[expr, form]
exports expr to a string, in the format
form.

Export["file", exprs, elems]
exports exprs to a string as elements spec-
ified by elems.

>> ExportString
[{{1,2,3,4},{3},{2},{4}}, "CSV"]

1,2,3,4
3,
2,
4,

>> ExportString[{1,2,3,4}, "CSV"]
1,

2,
3,
4,

>> ExportString[Integrate[f[x],{x
,0,2}], "SVG"]//Head

String

189

FileFormat

FileFormat["name"]
attempts to determine what format
Import should use to import specified
file.

>> FileFormat["ExampleData/
sunflowers.jpg"]

JPEG

>> FileFormat["ExampleData/
EinsteinSzilLetter.txt"]

Text

>> FileFormat["ExampleData/lena.tif
"]

TIFF

Import

Import["file"]
imports data from a file.

Import["file", elements]
imports the specified elements from a file.

Import["http://url", ...] and Import["
ftp://url", ...]

imports from a URL.

>> Import["ExampleData/ExampleData.
txt", "Elements"]

{Data, Lines, Plaintext, String, Words}

>> Import["ExampleData/ExampleData.
txt", "Lines"]

{Example File Format, Created
by Angus, 0.629452 0.586355,
0.711009 0.687453, 0.246540
0.433973, 0.926871 0.887255,
0.825141 0.940900, 0.847035
0.127464, 0.054348 0.296494,
0.838545 0.247025, 0.838697
0.436220, 0.309496 0.833591}

>> Import["ExampleData/colors.json
"]

{colorsArray
− > {{colorName− > black,
rgbValue− > (0, 0, 0),
hexValue− > #000 000} ,
{colorName− > red,
rgbValue− > (255, 0, 0),
hexValue− > #FF0 000} ,
{colorName− > green,
rgbValue− > (0, 255, 0),
hexValue− > #00FF00} ,
{colorName− > blue,
rgbValue− > (0, 0, 255),
hexValue− > #0 000FF} ,
{colorName− > yellow,
rgbValue− > (255, 255, 0),
hexValue− > #FFFF00} ,
{colorName− > cyan,
rgbValue− > (0, 255, 255),
hexValue− > #00FFFF} ,
{colorName− > magenta,
rgbValue− > (255, 0, 255),
hexValue− > #FF00FF} ,
{colorName− > white,
rgbValue− > (255, 255, 255),
hexValue− > #FFFFFF}}}

$ImportFormats

$ImportFormats
returns a list of file formats supported by
Import.

>> $ImportFormats

{BMP, Base64, CSV,
ExpressionJSON, GIF, HTML,
ICO, JPEG, JPEG2 000, JSON,
PBM, PCX, PGM, PNG, PPM,
Package, TGA, TIFF, Text, XML}

190

ImportString

ImportString["data‘‘,”format"]
imports data in the specified format from
a string.

ImportString["file", elements]
imports the specified elements from a
string.

ImportString["data"]
attempts to determine the format of the
string from its content.

>> str = "Hello!\n This is a
testing text\n";

>> ImportString[str, "Elements"]

{Data, Lines, Plaintext, String, Words}

>> ImportString[str, "Lines"]

{Hello!, This is a testing text}

RegisterExport

RegisterExport["format", func]
register func as the default function used
when exporting from a file of type "
format".

Simple text exporter
>> ExampleExporter1[filename_,

data_, opts___] := Module[{strm
= OpenWrite[filename], char =
data}, WriteString[strm, char];
Close[strm]]

>> ImportExport‘RegisterExport["
ExampleFormat1",
ExampleExporter1]

>> Export["sample.txt", "Encode
this string!", "ExampleFormat1
"];

>> FilePrint["sample.txt"]

Very basic encrypted text exporter

>> ExampleExporter2[filename_,
data_, opts___] := Module[{strm
= OpenWrite[filename], char}, (*
TODO: Check data *)char =

FromCharacterCode[Mod[
ToCharacterCode[data] - 84, 26]
+ 97]; WriteString[strm, char];
Close[strm]]

>> ImportExport‘RegisterExport["
ExampleFormat2",
ExampleExporter2]

>> Export["sample.txt", "
encodethisstring", "
ExampleFormat2"];

>> FilePrint["sample.txt"]

RegisterImport

RegisterImport["format", defaultFunction]
register defaultFunction as the default
function used when importing from a file
of type "format".

RegisterImport["format", {"elem1" :>
conditionalFunction1, "elem2" :> conditional-
Function2, ..., defaultFunction}]

registers multiple elements (elem1, ...)
and their corresponding converter func-
tions (conditionalFunction1, ...) in addition
to the defaultFunction.

RegisterImport["format", {"
conditionalFunctions, defaultFunction,
"elem3" :> postFunction3, "elem4" :>
postFunction4, ...}]

also registers additional elements (elem3,
...) whose converters (postFunction3, ...)
act on output from the low-level fun-
cions.

First, define the default function used to import
the data.
>> ExampleFormat1Import[

filename_String] := Module[{
stream, head, data}, stream =
OpenRead[filename]; head =
ReadList[stream, String, 2];
data = Partition[ReadList[stream
, Number], 2]; Close[stream]; {"
Header" -> head, "Data" -> data
}]

191

RegisterImport is then used to register the
above function to a new data format.
>> ImportExport‘RegisterImport["

ExampleFormat1",
ExampleFormat1Import]

>> FilePrint["ExampleData/
ExampleData.txt"]

ExampleFileFormat

CreatedbyAngus

0.6294520.586355
0.7110090.687453
0.2465400.433973
0.9268710.887255
0.8251410.940900
0.8470350.127464
0.0543480.296494
0.8385450.247025
0.8386970.436220
0.3094960.833591

>> Import["ExampleData/ExampleData.
txt", {"ExampleFormat1", "
Elements"}]

{Data, Header}

>> Import["ExampleData/ExampleData.
txt", {"ExampleFormat1", "Header
"}]

{Example File Format,
Created by Angus}

Conditional Importer:
>> ExampleFormat2DefaultImport[

filename_String] := Module[{
stream, head}, stream = OpenRead
[filename]; head = ReadList[
stream, String, 2]; Close[stream
]; {"Header" -> head}]

>> ExampleFormat2DataImport[
filename_String] := Module[{
stream, data}, stream = OpenRead
[filename]; Skip[stream, String,
2]; data = Partition[ReadList[

stream, Number], 2]; Close[
stream]; {"Data" -> data}]

>> ImportExport‘RegisterImport["
ExampleFormat2", {"Data" :>
ExampleFormat2DataImport,
ExampleFormat2DefaultImport}]

>> Import["ExampleData/ExampleData.
txt", {"ExampleFormat2", "
Elements"}]

{Data, Header}

>> Import["ExampleData/ExampleData.
txt", {"ExampleFormat2", "Header
"}]

{Example File Format,
Created by Angus}

>> Import["ExampleData/ExampleData.
txt", {"ExampleFormat2", "Data
"}] // Grid

0.629452 0.586355
0.711009 0.687453
0.24654 0.433973

0.926871 0.887255
0.825141 0.9409
0.847035 0.127464
0.054348 0.296494
0.838545 0.247025
0.838697 0.43622
0.309496 0.833591

URLFetch

URLFetch[URL]
Returns the content of URL as a string.

= ...

The Main Loop
The Main Loop
An interactive session operates a loop, called the
“main loop” in this way:

• read input
• process input
• format and print results
• repeat

As part of this loop, various global objects in this
section are consulted.
There are a variety of “hooks” that allow you to
insert functions to be applied to the expresssions
at various stages in the main loop.
If you assign a function to the global variable
$PreRead it will be applied with the input that
is read in the first step listed above.

192

Similarly, if you assign a function to global vari-
able $Pre, it will be applied with the input be-
fore processing the input, the second step listed
above.

$HistoryLength

$HistoryLength
specifies the maximum number of In and
Out entries.

>> $HistoryLength
100

>> $HistoryLength = 1;

>> 42

>> %

>> %%
%3

>> $HistoryLength = 0;

>> 42

>> %

$Post

$Post
is a global variable whose value, if set, is ap-
plied to every output expression.

$Pre

$Pre
is a global variable whose value, if set, is ap-
plied to every input expression.

Set Timing as the $Pre function, stores the en-
lapsed time in a variable, stores just the result in
Out[$Line] and print a formated version show-
ing the enlapsed time
>> $Pre := (Print["[Processing

input...]"];#1)&

>> $Post := (Print["[Storing result
...]"]; #1)&

[Processinginput...]

[Storingresult...]

>> $PrePrint := (Print["The result
is:"]; {TimeUsed[], #1})&

[Processinginput...]

[Storingresult...]

>> 2 + 2

>> $Pre = .; $Post = .; $PrePrint =
.; $EnlapsedTime = .;

[Processinginput...]

>> 2 + 2

$PrePrint

$PrePrint
is a global variable whose value, if set, is ap-
plied to every output expression before it is
printed.

$PreRead

$PreRead
is a global variable whose value, if set, is ap-
plied to the text or box form of every input
expression before it is fed to the parser.
(Not implemented yet)

$SyntaxHandler

$SyntaxHandler
is a global variable whose value, if set, is ap-
plied to any input string that is found to con-
tain a syntax error.
(Not implemented yet)

In

In[k]
gives the kth line of input.

193

>> x = 1
1

>> x = x + 1
2

>> Do[In[2], {3}]

>> x
5

>> In[-1]
5

>> Definition[In]
Attributes [In] = {Listable, Protected}

In [6] = Definition [In]
In [5] = In [− 1]
In [4] = x
In [3] = Do

[
In [2] , {3}

]
In [2] = x = x + 1
In [1] = x = 1

$Line

$Line
holds the current input line number.

>> $Line

>> $Line

>> $Line = 12;

>> 2 * 5
10

>> Out[13]
10

>> $Line = -1;
Non − negativeintegerexpected.

Out

Out[k]
%k

gives the result of the kth input line.
%, %%, etc.

gives the result of the previous input line,
of the line before the previous input line,
etc.

>> 42
42

>> %

>> 43;

>> %

>> 44
44

>> %1
42

>> %%
44

>> Hold[Out[-1]]
Hold [%]

>> Hold[%4]
Hold [%4]

>> Out[0]
Out [0]

194

27. Integer Functions
Integer Functions can work on integers of any size.

Contents

Combinatorial Functions 195
Binomial 195
DiceDissimilarity . 195
JaccardDissimilarity 196
MatchingDissimi-

larity . . . 196
Multinomial . . . 196
RogersTanimo-

toDissimi-
larity . . . 196

RussellRaoDissim-
ilarity . . . 196

SokalSneathDis-
similarity . 197

Subsets 197
YuleDissimilarity . 197

Division-Related
Functions 197
CoprimeQ 198
EvenQ 198
GCD 198
LCM 198
Mod 198
OddQ 198

PowerMod 199
PrimeQ 199
Quotient 199
QuotientRemainder 199

Recurrence and Sum
Functions 199
Fibonacci 199
HarmonicNumber 200
StirlingS1 200
StirlingS2 200

Combinatorial Functions
Combinatorial Functions
Combinatorics is an area of mathematics primar-
ily concerned with counting, both as a means
and an end in obtaining results, and certain
properties of finite structures.
It is closely related to many other areas of mathe-
matics and has many applications ranging from
logic to statistical physics, from evolutionary bi-
ology to computer science, etc.

Binomial

Binomial[n, k]
gives the binomial coefficient n choose k.

>> Binomial[5, 3]
10

Binomial supports inexact numbers:
>> Binomial[10.5,3.2]

165.286

Some special cases:
>> Binomial[10, -2]

0

>> Binomial[-10.5, -3.5]
0.

DiceDissimilarity

DiceDissimilarity[u, v]
returns the Dice dissimilarity between
the two boolean 1-D lists u and v, which
is defined as (c_tf + c_ft) / (2 * c_tt +
c_ft + c_tf), where n is len(u) and c_ij is
the number of occurrences of u[k]=i and
v[k]=j for k<n.

>> DiceDissimilarity[{1, 0, 1, 1,
0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]

1
2

195

JaccardDissimilarity

JaccardDissimilarity[u, v]
returns the Jaccard-Needham dissimilar-
ity between the two boolean 1-D lists u
and v, which is defined as (c_tf + c_ft) /
(c_tt + c_ft + c_tf), where n is len(u) and
c_ij is the number of occurrences of u[k]=i
and v[k]=j for k<n.

>> JaccardDissimilarity[{1, 0, 1,
1, 0, 1, 1}, {0, 1, 1, 0, 0, 0,
1}]

2
3

MatchingDissimilarity

MatchingDissimilarity[u, v]
returns the Matching dissimilarity be-
tween the two boolean 1-D lists u and v,
which is defined as (c_tf + c_ft) / n, where
n is len(u) and c_ij is the number of occur-
rences of u[k]=i and v[k]=j for k<n.

>> MatchingDissimilarity[{1, 0, 1,
1, 0, 1, 1}, {0, 1, 1, 0, 0, 0,
1}]

4
7

Multinomial

Multinomial[n1, n2, ...]
gives the multinomial coefficient (n1+
n2+...)!/(n1!n2!...).

>> Multinomial[2, 3, 4, 5]
2 522 520

>> Multinomial[]
1

Multinomial is expressed in terms of Binomial:
>> Multinomial[a, b, c]

Binomial [a, a] Binomial [
a + b, b] Binomial [a + b + c, c]

Multinomial[n-k, k] is equivalent to Binomial
[n, k].

>> Multinomial[2, 3]
10

RogersTanimotoDissimilarity

RogersTanimotoDissimilarity[u, v]
returns the Rogers-Tanimoto dissimilar-
ity between the two boolean 1-D lists u
and v, which is defined as R / (c_tt + c_ff
+ R) where n is len(u), c_ij is the num-
ber of occurrences of u[k]=i and v[k]=j for
k<n, and R = 2 * (c_tf + c_ft).

>> RogersTanimotoDissimilarity[{1,
0, 1, 1, 0, 1, 1}, {0, 1, 1, 0,
0, 0, 1}]

8
11

RussellRaoDissimilarity

RussellRaoDissimilarity[u, v]
returns the Russell-Rao dissimilarity be-
tween the two boolean 1-D lists u and v,
which is defined as (n - c_tt) / c_tt where
n is len(u) and c_ij is the number of occur-
rences of u[k]=i and v[k]=j for k<n.

>> RussellRaoDissimilarity[{1, 0,
1, 1, 0, 1, 1}, {0, 1, 1, 0, 0,
0, 1}]

5
7

SokalSneathDissimilarity

SokalSneathDissimilarity[u, v]
returns the Sokal-Sneath dissimilarity be-
tween the two boolean 1-D lists u and v,
which is defined as R / (c_tt + R) where n
is len(u), c_ij is the number of occurrences
of u[k]=i and v[k]=j for k<n, and R = 2 *
(c_tf + c_ft).

196

>> SokalSneathDissimilarity[{1, 0,
1, 1, 0, 1, 1}, {0, 1, 1, 0, 0,
0, 1}]

4
5

Subsets

Subsets[list]
finds a list of all possible subsets of list.

Subsets[list, n]
finds a list of all possible subsets contain-
ing at most n elements.

Subsets[list, {n}]
finds a list of all possible subsets contain-
ing exactly n elements.

Subsets[list, {min, max}]
finds a list of all possible subsets contain-
ing between min and max elements.

Subsets[list, spec, n]
finds a list of the first n possible subsets.

Subsets[list, spec, {n}]
finds the nth possible subset.

All possible subsets (power set):
>> Subsets[{a, b, c}]

{{} , {a} , {b} , {c} , {a,
b} , {a, c} , {b, c} , {a, b, c}}

All possible subsets containing up to 2 elements:
>> Subsets[{a, b, c, d}, 2]

{{} , {a} , {b} , {c} , {d} ,
{a, b} , {a, c} , {a, d} ,
{b, c} , {b, d} , {c, d}}

Subsets containing exactly 2 elements:
>> Subsets[{a, b, c, d}, {2}]

{{a, b} , {a, c} , {a, d} ,
{b, c} , {b, d} , {c, d}}

The first 5 subsets containing 3 elements:
>> Subsets[{a, b, c, d, e}, {3}, 5]

{{a, b, c} , {a, b, d} , {a,
b, e} , {a, c, d} , {a, c, e}}

All subsets with even length:

>> Subsets[{a, b, c, d, e}, {0, 5,
2}]

{{} , {a, b} , {a, c} , {a, d} , {a, e} ,
{b, c} , {b, d} , {b, e} , {c, d} , {c,
e} , {d, e} , {a, b, c, d} , {a, b, c, e} ,
{a, b, d, e} , {a, c, d, e} , {b, c, d, e}}

The 25th subset:
>> Subsets[Range[5], All, {25}]

{{2, 4, 5}}

The odd-numbered subsets of {a,b,c,d} in reverse
order:
>> Subsets[{a, b, c, d}, All, {15,

1, -2}]

{{b, c, d} , {a, b, d} , {c, d} ,
{b, c} , {a, c} , {d} , {b} , {}}

YuleDissimilarity

YuleDissimilarity[u, v]
returns the Yule dissimilarity between
the two boolean 1-D lists u and v, which is
defined as R / (c_tt * c_ff + R / 2) where n
is len(u), c_ij is the number of occurrences
of u[k]=i and v[k]=j for k<n, and R = 2 *
c_tf * c_ft.

>> YuleDissimilarity[{1, 0, 1, 1,
0, 1, 1}, {0, 1, 1, 0, 0, 0, 1}]

6
5

Division-Related Functions
Division-Related Function

CoprimeQ

CoprimeQ[x, y]
tests whether x and y are coprime by
computing their greatest common divi-
sor.

>> CoprimeQ[7, 9]
True

>> CoprimeQ[-4, 9]
True

197

>> CoprimeQ[12, 15]

False

CoprimeQ also works for complex numbers
>> CoprimeQ[1+2I, 1-I]

True

>> CoprimeQ[4+2I, 6+3I]
True

>> CoprimeQ[2, 3, 5]
True

>> CoprimeQ[2, 4, 5]

False

EvenQ

EvenQ[x]
returns True if x is even, and False oth-
erwise.

>> EvenQ[4]
True

>> EvenQ[-3]
False

>> EvenQ[n]
False

GCD

GCD[n1, n2, ...]
computes the greatest common divisor of
the given integers.

>> GCD[20, 30]
10

>> GCD[10, y]

GCD
[
10, y

]
GCD is Listable:
>> GCD[4, {10, 11, 12, 13, 14}]

{2, 1, 4, 1, 2}

GCD does not work for rational numbers and
Gaussian integers yet.

LCM

LCM[n1, n2, ...]
computes the least common multiple of
the given integers.

>> LCM[15, 20]
60

>> LCM[20, 30, 40, 50]
600

Mod

Mod[x, m]
returns x modulo m.

>> Mod[14, 6]
2

>> Mod[-3, 4]
1

>> Mod[-3, -4]
−3

>> Mod[5, 0]
Theargument0shouldbenonzero.

Mod [5, 0]

OddQ

OddQ[x]
returns True if x is odd, and False other-
wise.

>> OddQ[-3]
True

>> OddQ[0]
False

PowerMod

PowerMod[x, y, m]
computes x∧y modulo m.

>> PowerMod[2, 10000000, 3]
1

198

>> PowerMod[3, -2, 10]
9

>> PowerMod[0, -1, 2]
0isnotinvertiblemodulo2.
PowerMod [0, − 1, 2]

>> PowerMod[5, 2, 0]
Theargument0shouldbenonzero.

PowerMod [5, 2, 0]

PowerMod does not support rational coefficients
(roots) yet.

PrimeQ

PrimeQ[n]
returns True if n is a prime number.

For very large numbers, PrimeQ uses proba-
bilistic prime testing, so it might be wrong
sometimes (a number might be composite even
though PrimeQ says it is prime). The algorithm
might be changed in the future.
>> PrimeQ[2]

True

>> PrimeQ[-3]
True

>> PrimeQ[137]
True

>> PrimeQ[2 ^ 127 - 1]
True

All prime numbers between 1 and 100:
>> Select[Range[100], PrimeQ]

{2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97}

PrimeQ has attribute Listable:
>> PrimeQ[Range[20]]

{False, True, True, False, True,
False, True, False, False, False,
True, False, True, False, False,
False, True, False, True, False}

Quotient

Quotient[m, n]
computes the integer quotient of m and n.

>> Quotient[23, 7]
3

QuotientRemainder

QuotientRemainder[m, n]
computes a list of the quotient and re-
mainder from division of m by n.

>> QuotientRemainder[23, 7]
{3, 2}

Recurrence and Sum Functions
Recurrence and Sum Functions
A recurrence relation is an equation that recur-
sively defines a sequence or multidimensional
array of values, once one or more initial terms
are given; each further term of the sequence or
array is defined as a function of the preceding
terms.

Fibonacci

Fibonacci[n]
computes the nth Fibonacci number.

>> Fibonacci[0]
0

>> Fibonacci[1]
1

>> Fibonacci[10]
55

>> Fibonacci[200]
280 571 172 992 510 140 037 ˜

˜611 932 413 038 677 189 525

HarmonicNumber

HarmonicNumber[n]
returns the nth harmonic number.

199

>> Table[HarmonicNumber[n], {n, 8}]{
1,

3
2

,
11
6

,
25
12

,
137
60

,
49
20

,
363
140

,
761
280

}
>> HarmonicNumber[3.8]

2.03806

StirlingS1

StirlingS1[n, m]
gives the Stirling number of the first kind
$ _n∧m$.

Integer mathematical function, suitable for both
symbolic and numerical manipulation. gives the
number of permutations of n elements that con-
tain exactly m cycles.
>> StirlingS1[50, 1]

−608 281 864 034 267 560 872 ˜
˜252 163 321 295 376 887 552 ˜
˜831 379 210 240 000 000 000

StirlingS2

StirlingS2[n, m]
gives the Stirling number of the second
kind _n∧m.

returns the number of ways of partitioning a set
of n elements into m non empty subsets.
>> Table[StirlingS2[10, m], {m,

10}]

{1, 511, 9 330, 34 105, 42 525
, 22 827, 5 880, 750, 45, 1}

200

28. List Functions
S-Expressions make up a core part of Mathics. The parsed and internal representation of an an S-
Expression is nothing more than a list with possibliy nested elements.
As a result, there about a hundred list functions.

Contents

Associations 201
Association 201
AssociationQ . . . 202
Keys 202
Lookup 202
Values 202

Constructing Lists . . . 202
Array 203
ConstantArray . . 203
Normal 203
Permutations . . . 203
Range 203
Reap 204
Sow 204
Table 204
Tuples 205

Elements of Lists . . . 205
Append 205
AppendTo 205

Cases 206
Count 206
DeleteCases 206
Drop 206
Extract 206
First 206
FirstCase 207
FirstPosition . . . 207
Last 207
Length 207
MemberQ 208
Most 208
Part 209
Pick 209
Prepend 209
PrependTo 209
ReplacePart 210
Rest 210
Select 210

Span (;;) 210
Take 211

Rearranging and
Restructuring Lists 211
Catenate 211
Complement . . . 211
DeleteDuplicates . 211
Gather 212
GatherBy 212
Intersection 212
Join 212
Partition 212
Reverse 213
Riffle 213
RotateLeft 213
RotateRight 214
Tally 214
Union 214

Associations
Associations
An Association maps keys to values and is sim-
ilar to a dictionary in Python; it is often sparse
in that their key space is much larger than the
number of actual keys found in the collection.

Association

Association[key1 -> val1, key2 -> val2,
...]
<|key1 -> val1, key2 -> val2, ...|>

represents an association between keys
and values.

Association is the head of associations:

>> Head[<|a -> x, b -> y, c -> z|>]
Association

>> <|a -> x, b -> y|>

<|a− > x, b− > y|>

>> Association[{a -> x, b -> y}]

<|a− > x, b− > y|>

Associations can be nested:
>> <|a -> x, b -> y, <|a -> z, d ->

t|>|>

<|a− > z, b− > y, d− > t|>

201

AssociationQ

AssociationQ[expr]
return True if expr is a valid Association
object, and False otherwise.

>> AssociationQ[<|a -> 1, b :> 2|>]
True

>> AssociationQ[<|a, b|>]
False

Keys

Keys[<|key1 -> val1, key2 -> val2,
...|>]

return a list of the keys keyi in an associa-
tion.

Keys[{key1 -> val1, key2 -> val2, ...}]
return a list of the keyi in a list of rules.

>> Keys[<|a -> x, b -> y|>]

{a, b}

>> Keys[{a -> x, b -> y}]

{a, b}

Keys automatically threads over lists:
>> Keys[{<|a -> x, b -> y|>, {w ->

z, {}}}]

{{a, b} , {w, {}}}

Keys are listed in the order of their appearance:
>> Keys[{c -> z, b -> y, a -> x}]

{c, b, a}

Lookup

Lookup[assoc, key]
looks up the value associated with
key in the association assoc, or Miss-
ing[KeyAbsent].

Values

Values[<|key1 -> val1, key2 -> val2,
...|>]

return a list of the values vali in an asso-
ciation.

Values[{key1 -> val1, key2 -> val2,
...}]

return a list of the vali in a list of rules.

>> Values[<|a -> x, b -> y|>]

{x, y}

>> Values[{a -> x, b -> y}]

{x, y}

Values automatically threads over lists:
>> Values[{<|a -> x, b -> y|>, {c

-> z, {}}}]

{{x, y} , {z, {}}}

Values are listed in the order of their appearance:
>> Values[{c -> z, b -> y, a -> x}]

{z, y, x}

Constructing Lists
Constructing Lists
Functions for constructing lists of various sizes
and structure.

Array

Array[f , n]
returns the n-element list {f [1], ...,
f [n]}.

Array[f , n, a]
returns the n-element list {f [a], ..., f [
a + n]}.

Array[f , {n, m}, {a, b}]
returns an n-by-m matrix created by ap-
plying f to indices ranging from (a, b)
to (a + n, b + m).

Array[f , dims, origins, h]
returns an expression with the specified
dimensions and index origins, with head
h (instead of List).

>> Array[f, 4]

{ f [1] , f [2] , f [3] , f [4]}

202

>> Array[f, {2, 3}]

{{ f [1, 1] , f [1, 2] , f [1, 3]} ,
{ f [2, 1] , f [2, 2] , f [2, 3]}}

>> Array[f, {2, 3}, 3]

{{ f [3, 3] , f [3, 4] , f [3, 5]} ,
{ f [4, 3] , f [4, 4] , f [4, 5]}}

>> Array[f, {2, 3}, {4, 6}]

{{ f [4, 6] , f [4, 7] , f [4, 8]} ,
{ f [5, 6] , f [5, 7] , f [5, 8]}}

>> Array[f, {2, 3}, 1, Plus]

f [1, 1] + f [1, 2] + f [1,
3] + f [2, 1] + f [2, 2] + f [2, 3]

ConstantArray

ConstantArray[expr, n]
returns a list of n copies of expr.

>> ConstantArray[a, 3]

{a, a, a}

>> ConstantArray[a, {2, 3}]

{{a, a, a} , {a, a, a}}

Normal

Normal[expr_]
Brings especial expressions to a normal
expression from different especial forms.

Permutations

Permutations[list]
gives all possible orderings of the items
in list.

Permutations[list, n]
gives permutations up to length n.

Permutations[list, {n}]
gives permutations of length n.

>> Permutations[{y, 1, x}]

{{y, 1, x} , {y, x, 1} , {1, y, x} ,
{1, x, y} , {x, y, 1} , {x, 1, y}}

Elements are differentiated by their position in
list, not their value.
>> Permutations[{a, b, b}]

{{a, b, b} , {a, b, b} , {b, a, b} ,
{b, b, a} , {b, a, b} , {b, b, a}}

>> Permutations[{1, 2, 3}, 2]
{{} , {1} , {2} , {3} , {1, 2} , {1,

3} , {2, 1} , {2, 3} , {3, 1} , {3, 2}}

>> Permutations[{1, 2, 3}, {2}]
{{1, 2} , {1, 3} , {2, 1} ,
{2, 3} , {3, 1} , {3, 2}}

Range

Range[n]
returns a list of integers from 1 to n.

Range[a, b]
returns a list of integers from a to b.

>> Range[5]

{1, 2, 3, 4, 5}

>> Range[-3, 2]

{−3, − 2, − 1, 0, 1, 2}

>> Range[0, 2, 1/3]{
0,

1
3

,
2
3

, 1,
4
3

,
5
3

, 2
}

Reap

Reap[expr]
gives the result of evaluating expr, to-
gether with all values sown during this
evaluation. Values sown with different
tags are given in different lists.

Reap[expr, pattern]
only yields values sown with a tag
matching pattern. Reap[expr] is equiva-
lent to Reap[expr, _].

Reap[expr, {pattern1, pattern2, ...}]
uses multiple patterns.

Reap[expr, pattern, f]
applies f on each tag and the cor-
responding values sown in the form
f [tag, {e1, e2, ...}].

203

>> Reap[Sow[3]; Sow[1]]

{1, {{3, 1}}}

>> Reap[Sow[2, {x, x, x}]; Sow[3, x
]; Sow[4, y]; Sow[4, 1], {
_Symbol, _Integer, x}, f]{

4,
{{

f
[
x, {2, 2, 2, 3}

]
, f

[
y, {4}

]}
,
{

f
[
1, {4}

]}
,{

f
[
x, {2, 2, 2, 3}

]}}}
Find the unique elements of a list, keeping their
order:
>> Reap[Sow[Null, {a, a, b, d, c, a

}], _, # &][[2]]

{a, b, d, c}

Sown values are reaped by the innermost match-
ing Reap:
>> Reap[Reap[Sow[a, x]; Sow[b, 1],

_Symbol, Print["Inner: ",
#1]&];, _, f]

Inner : x{
Null,

{
f
[
1, {b}

]}}
When no value is sown, an empty list is re-
turned:
>> Reap[x]

{x, {}}

Sow

Sow[e]
sends the value e to the innermost Reap.

Sow[e, tag]
sows e using tag. Sow[e] is equivalent to
Sow[e, Null].

Sow[e, {tag1, tag2, ...}]
uses multiple tags.

Table

Table[expr, n]
generates a list of n copies of expr.

Table[expr, {i, n}]
generates a list of the values of expr when
i runs from 1 to n.

Table[expr, {i, start, stop, step}]
evaluates expr with i ranging from start to
stop, incrementing by step.

Table[expr, {i, {e1, e2, ..., ei}}]
evaluates expr with i taking on the values
e1, e2, ..., ei.

>> Table[x, 3]
{x, x, x}

>> n = 0; Table[n = n + 1, {5}]
{1, 2, 3, 4, 5}

>> Table[i, {i, 4}]
{1, 2, 3, 4}

>> Table[i, {i, 2, 5}]
{2, 3, 4, 5}

>> Table[i, {i, 2, 6, 2}]
{2, 4, 6}

>> Table[i, {i, Pi, 2 Pi, Pi / 2}]{
Pi,

3Pi
2

, 2Pi
}

>> Table[x^2, {x, {a, b, c}}]{
a2, b2, c2

}
Table supports multi-dimensional tables:
>> Table[{i, j}, {i, {a, b}}, {j,

1, 2}]

{{{a, 1} , {a, 2}} , {{b, 1} , {b, 2}}}

Tuples

Tuples[list, n]
returns a list of all n-tuples of elements in
list.

Tuples[{list1, list2, ...}]
returns a list of tuples with elements from
the given lists.

204

>> Tuples[{a, b, c}, 2]

{{a, a} , {a, b} , {a, c} , {b, a} , {b,
b} , {b, c} , {c, a} , {c, b} , {c, c}}

>> Tuples[{}, 2]

{}

>> Tuples[{a, b, c}, 0]

{{}}

>> Tuples[{{a, b}, {1, 2, 3}}]

{{a, 1} , {a, 2} , {a, 3} ,
{b, 1} , {b, 2} , {b, 3}}

The head of list need not be List:
>> Tuples[f[a, b, c], 2]

{ f [a, a] , f [a, b] , f [a, c] ,
f [b, a] , f [b, b] , f [b, c] ,
f [c, a] , f [c, b] , f [c, c]}

However, when specifying multiple expres-
sions, List is always used:
>> Tuples[{f[a, b], g[c, d]}]

{{a, c} , {a, d} , {b, c} , {b, d}}

Elements of Lists
Elements of Lists
Functions for accessing elements of lists using
either indices, positions, or patterns of criteria.

Append

Append[expr, elem]
returns expr with elem appended.

>> Append[{1, 2, 3}, 4]

{1, 2, 3, 4}

Append works on expressions with heads other
than List:
>> Append[f[a, b], c]

f [a, b, c]

Unlike Join, Append does not flatten lists in
item:
>> Append[{a, b}, {c, d}]

{a, b, {c, d}}

AppendTo

AppendTo[s, item]
append item to value of s and sets s to the
result.

>> s = {};

>> AppendTo[s, 1]

{1}

>> s
{1}

Append works on expressions with heads other
than List:
>> y = f[];

>> AppendTo[y, x]

f [x]

>> y

f [x]

Cases

Cases[list, pattern]
returns the elements of list that match pat-
tern.

Cases[list, pattern, ls]
returns the elements matching at level-
spec ls.

Cases[list, pattern, Heads->bool]
Match including the head of the expres-
sion in the search.

>> Cases[{a, 1, 2.5, "string"},
_Integer|_Real]

{1, 2.5}

>> Cases[_Complex][{1, 2I, 3, 4-I,
5}]

{2I, 4 − I}

Find symbols among the elements of an expres-
sion:
>> Cases[{b, 6, \[Pi]}, _Symbol]

{b, Pi}

Also include the head of the expression in the
previous search:

205

>> Cases[{b, 6, \[Pi]}, _Symbol,
Heads -> True]

{List, b, Pi}

Count

Count[list, pattern]
returns the number of times pattern ap-
pears in list.

Count[list, pattern, ls]
counts the elements matching at level-
spec ls.

>> Count[{3, 7, 10, 7, 5, 3, 7,
10}, 3]

2

>> Count[{{a, a}, {a, a, a}, a}, a,
{2}]

5

DeleteCases

DeleteCases[list, pattern]
returns the elements of list that do not
match pattern.

DeleteCases[list, pattern, levelspec]
removes all parts of $list on levels spec-
ified by levelspec that match pattern (not
fully implemented).

DeleteCases[list, pattern, levelspec, n]
removes the first n parts of list that match
pattern.

>> DeleteCases[{a, 1, 2.5, "string
"}, _Integer|_Real]

{a, string}

>> DeleteCases[{a, b, 1, c, 2, 3},
_Symbol]

{1, 2, 3}

Drop

Drop[expr, n]
returns expr with the first n leaves re-
moved.

>> Drop[{a, b, c, d}, 3]

{d}

>> Drop[{a, b, c, d}, -2]

{a, b}

>> Drop[{a, b, c, d, e}, {2, -2}]

{a, e}

Drop a submatrix:
>> A = Table[i*10 + j, {i, 4}, {j,

4}]

{{11, 12, 13, 14} , {21, 22, 23, 24} ,
{31, 32, 33, 34} , {41, 42, 43, 44}}

>> Drop[A, {2, 3}, {2, 3}]

{{11, 14} , {41, 44}}

Extract

Extract[expr, list]
extracts parts of expr specified by list.

Extract[expr, {list1, list2, ...}]
extracts a list of parts.

Extract[expr, i, j, ...] is equivalent to Part
[expr, {i, j, ...}].
>> Extract[a + b + c, {2}]

b

>> Extract[{{a, b}, {c, d}}, {{1},
{2, 2}}]

{{a, b} , d}

First

First[expr]
returns the first element in expr.

First[expr] is equivalent to expr[[1]].
>> First[{a, b, c}]

a

>> First[a + b + c]
a

>> First[x]
Nonatomicexpressionexpected.

First [x]

206

FirstCase

FirstCase[{e1, e2, ...}, pattern]
gives the first ei to match pattern, or
$Missing[“NotFound”]$ if none match-
ing pattern is found.

FirstCase[{e1,e2, ...}, pattern -> rhs]
gives the value of rhs corresponding to
the first ei to match pattern.

FirstCase[expr, pattern, default]
gives default if no element matching pat-
tern is found.

FirstCase[expr, pattern, default, levelspec]
finds only objects that appear on levels
specified by levelspec.

FirstCase[pattern]
represents an operator form of FirstCase
that can be applied to an expression.

FirstPosition

FirstPosition[expr, pattern]
gives the position of the first element
in expr that matches pattern, or Miss-
ing[“NotFound”] if no such element is
found.

FirstPosition[expr, pattern, default]
gives default if no element matching pat-
tern is found.

FirstPosition[expr, pattern, default,
levelspec]

finds only objects that appear on levels
specified by levelspec.

>> FirstPosition[{a, b, a, a, b, c,
b}, b]

{2}

>> FirstPosition[{{a, a, b}, {b, a,
a}, {a, b, a}}, b]

{1, 3}

>> FirstPosition[{x, y, z}, b]

Missing [NotFound]

Find the first position at which x∧2 to appears:
>> FirstPosition[{1 + x^2, 5, x^4,

a + (1 + x^2)^2}, x^2]

{1, 2}

Last

Last[expr]
returns the last element in expr.

Last[expr] is equivalent to expr[[-1]].
>> Last[{a, b, c}]

c

>> Last[x]
Nonatomicexpressionexpected.

Last [x]

Length

Length[expr]
returns the number of leaves in expr.

Length of a list:
>> Length[{1, 2, 3}]

3

Length operates on the FullForm of expressions:
>> Length[Exp[x]]

2

>> FullForm[Exp[x]]
Power [E, x]

The length of atoms is 0:
>> Length[a]

0

Note that rational and complex numbers are
atoms, although their FullForm might suggest
the opposite:
>> Length[1/3]

0

>> FullForm[1/3]
Rational [1, 3]

MemberQ

MemberQ[list, pattern]
returns True if pattern matches any ele-
ment of list, or False otherwise.

>> MemberQ[{a, b, c}, b]
True

207

>> MemberQ[{a, b, c}, d]
False

>> MemberQ[{"a", b, f[x]}, _?
NumericQ]

False

>> MemberQ[_List][{{}}]
True

Most

Most[expr]
returns expr with the last element re-
moved.

Most[expr] is equivalent to expr[[;;-2]].
>> Most[{a, b, c}]

{a, b}

>> Most[a + b + c]
a + b

>> Most[x]
Nonatomicexpressionexpected.

Most [x]

Part

Part[expr, i]
returns part i of expr.

Extract an element from a list:
>> A = {a, b, c, d};

>> A[[3]]
c

Negative indices count from the end:
>> {a, b, c}[[-2]]

b

Part can be applied on any expression, not nec-
essarily lists.
>> (a + b + c)[[2]]

b

expr[[0]] gives the head of expr:
>> (a + b + c)[[0]]

Plus

Parts of nested lists:

>> M = {{a, b}, {c, d}};

>> M[[1, 2]]
b

You can use Span to specify a range of parts:
>> {1, 2, 3, 4}[[2;;4]]

{2, 3, 4}

>> {1, 2, 3, 4}[[2;;-1]]
{2, 3, 4}

A list of parts extracts elements at certain in-
dices:
>> {a, b, c, d}[[{1, 3, 3}]]

{a, c, c}

Get a certain column of a matrix:
>> B = {{a, b, c}, {d, e, f}, {g, h

, i}};

>> B[[;;, 2]]
{b, e, h}

Extract a submatrix of 1st and 3rd row and the
two last columns:
>> B = {{1, 2, 3}, {4, 5, 6}, {7,

8, 9}};

>> B[[{1, 3}, -2;;-1]]
{{2, 3} , {8, 9}}

The 3d column of a matrix:
>> {{a, b, c}, {d, e, f}, {g, h, i

}}[[All, 3]]

{c, f , i}

Further examples:
>> (a+b+c+d)[[-1;;-2]]

0

>> x[[2]]
Partspeci f icationislongerthandeptho f object.

x [[2]]

Assignments to parts are possible:
>> B[[;;, 2]] = {10, 11, 12}

{10, 11, 12}

>> B

>> B[[;;, 3]] = 13
13

208

>> B

>> B[[1;;-2]] = t;

>> B

>> F = Table[i*j*k, {i, 1, 3}, {j,
1, 3}, {k, 1, 3}];

>> F[[;; All, 2 ;; 3, 2]] = t;

>> F

>> F[[;; All, 1 ;; 2, 3 ;; 3]] = k;

>> F

Of course, part specifications have precedence
over most arithmetic operations:
>> A[[1]] + B[[2]] + C[[3]] // Hold

// FullForm

Hold [Plus [Part [A, 1] ,
Part [B, 2] , Part [C, 3]]]

Pick

Pick[list, sel]
returns those items in list that are True in
sel.

Pick[list, sel, patt]
returns those items in list that match patt
in sel.

>> Pick[{a, b, c}, {False, True,
False}]

{b}

>> Pick[f[g[1, 2], h[3, 4]], {{True
, False}, {False, True}}]

f
[
g [1] , h [4]

]
>> Pick[{a, b, c, d, e}, {1, 2,

3.5, 4, 5.5}, _Integer]

{a, b, d}

Prepend

Prepend[expr, item]
returns expr with item prepended to its
leaves.

Prepend[expr]
Prepend[elem][expr] is equivalent to
Prepend[expr,elem].

Prepend is similar to Append, but adds item to
the beginning of expr:
>> Prepend[{2, 3, 4}, 1]

{1, 2, 3, 4}

Prepend works on expressions with heads other
than List:
>> Prepend[f[b, c], a]

f [a, b, c]

Unlike Join, Prepend does not flatten lists in
item:
>> Prepend[{c, d}, {a, b}]

{{a, b} , c, d}

PrependTo

PrependTo[s, item]
prepends item to value of s and sets s to
the result.

Assign s to a list
>> s = {1, 2, 4, 9}

{1, 2, 4, 9}

Add a new value at the beginning of the list:
>> PrependTo[s, 0]

{0, 1, 2, 4, 9}

The value assigned to s has changed:
>> s

{0, 1, 2, 4, 9}

PrependTo works with a head other than List:
>> y = f[a, b, c];

>> PrependTo[y, x]

f [x, a, b, c]

>> y

f [x, a, b, c]

209

ReplacePart

ReplacePart[expr, i -> new]
replaces part i in expr with new.

ReplacePart[expr, {{i, j} -> e1, {k,
l} -> e2}]

replaces parts i and j with e1, and parts k
and l with e2.

>> ReplacePart[{a, b, c}, 1 -> t]

{t, b, c}

>> ReplacePart[{{a, b}, {c, d}},
{2, 1} -> t]

{{a, b} , {t, d}}

>> ReplacePart[{{a, b}, {c, d}},
{{2, 1} -> t, {1, 1} -> t}]

{{t, b} , {t, d}}

>> ReplacePart[{a, b, c}, {{1},
{2}} -> t]

{t, t, c}

Delayed rules are evaluated once for each re-
placement:
>> n = 1;

>> ReplacePart[{a, b, c, d}, {{1},
{3}} :> n++]

{1, b, 2, d}

Non-existing parts are simply ignored:
>> ReplacePart[{a, b, c}, 4 -> t]

{a, b, c}

You can replace heads by replacing part 0:
>> ReplacePart[{a, b, c}, 0 ->

Times]

abc

(This is equivalent to Apply.)
Negative part numbers count from the end:
>> ReplacePart[{a, b, c}, -1 -> t]

{a, b, t}

Rest

Rest[expr]
returns expr with the first element re-
moved.

Rest[expr] is equivalent to expr[[2;;]].
>> Rest[{a, b, c}]

{b, c}

>> Rest[a + b + c]
b + c

>> Rest[x]
Nonatomicexpressionexpected.

Rest [x]

Select

Select[{e1, e2, ...}, f]
returns a list of the elements ei for which
f [ei] returns True.

Find numbers greater than zero:
>> Select[{-3, 0, 1, 3, a}, #>0&]

{1, 3}

Select works on an expression with any head:
>> Select[f[a, 2, 3], NumberQ]

f [2, 3]

>> Select[a, True]
Nonatomicexpressionexpected.

Select [a, True]

Span (;;)

Span
is the head of span ranges like 1;;3.

>> ;; // FullForm
Span [1, All]

>> 1;;4;;2 // FullForm
Span [1, 4, 2]

>> 2;;-2 // FullForm
Span [2, − 2]

>> ;;3 // FullForm
Span [1, 3]

210

Take

Take[expr, n]
returns expr with all but the first n leaves
removed.

>> Take[{a, b, c, d}, 3]
{a, b, c}

>> Take[{a, b, c, d}, -2]
{c, d}

>> Take[{a, b, c, d, e}, {2, -2}]
{b, c, d}

Take a submatrix:
>> A = {{a, b, c}, {d, e, f}};

>> Take[A, 2, 2]
{{a, b} , {d, e}}

Take a single column:
>> Take[A, All, {2}]

{{b} , {e}}

Rearranging and Restructuring
Lists
Rearranging and Restructuring Lists
These functions reorder and rearrange lists.

Catenate

Catenate[{l1, l2, ...}]
concatenates the lists l1, l2, ...

>> Catenate[{{1, 2, 3}, {4, 5}}]
{1, 2, 3, 4, 5}

Complement

Complement[all, e1, e2, ...]
returns an expression containing the ele-
ments in the set all that are not in any of
e1, e2, etc.

Complement[all, e1, e2, ..., SameTest->
test]

applies test to the elements in all and each
of the ei to determine equality.

The sets all, e1, etc can have any head, which
must all match. The returned expression has the
same head as the input expressions. The expres-
sion will be sorted and each element will only
occur once.
>> Complement[{a, b, c}, {a, c}]

{b}

>> Complement[{a, b, c}, {a, c}, {b
}]

{}

>> Complement[f[z, y, x, w], f[x],
f[x, z]]

f
[
w, y

]
>> Complement[{c, b, a}]

{a, b, c}

DeleteDuplicates

DeleteDuplicates[list]
deletes duplicates from list.

DeleteDuplicates[list, test]
deletes elements from list based on
whether the function test yields True on
pairs of elements.

DeleteDuplicates does not change the order of
the remaining elements.

>> DeleteDuplicates[{1, 7, 8, 4, 3,
4, 1, 9, 9, 2, 1}]

{1, 7, 8, 4, 3, 9, 2}

>> DeleteDuplicates[{3,2,1,2,3,4},
Less]

{3, 2, 1}

Gather

Gather[list, test]
gathers leaves of list into sub lists of items
that are the same according to test.

Gather[list]
gathers leaves of list into sub lists of items
that are the same.

The order of the items inside the sub lists is the
same as in the original list.

211

>> Gather[{1, 7, 3, 7, 2, 3, 9}]
{{1} , {7, 7} , {3, 3} , {2} , {9}}

>> Gather[{1/3, 2/6, 1/9}]{{
1
3

,
1
3

}
,
{

1
9

}}

GatherBy

GatherBy[list, f]
gathers leaves of list into sub lists of items
whose image under $f identical.

GatherBy[list, {f , g, ...}]
gathers leaves of list into sub lists of items
whose image under $f identical. Then,
gathers these sub lists again into sub sub
lists, that are identical under $g.

>> GatherBy[{{1, 3}, {2, 2}, {1,
1}}, Total]

{{{1, 3} , {2, 2}} , {{1, 1}}}

>> GatherBy[{"xy", "abc", "ab"},
StringLength]

{{xy, ab} , {abc}}

>> GatherBy[{{2, 0}, {1, 5}, {1,
0}}, Last]

{{{2, 0} , {1, 0}} , {{1, 5}}}

>> GatherBy[{{1, 2}, {2, 1}, {3,
5}, {5, 1}, {2, 2, 2}}, {Total,
Length}]

{{{{1, 2} , {2, 1}}} , {{{3,
5}}} , {{{5, 1}} , {{2, 2, 2}}}}

Intersection

Intersection[a, b, ...]
gives the intersection of the sets. The re-
sulting list will be sorted and each ele-
ment will only occur once.

>> Intersection[{1000, 100, 10, 1},
{1, 5, 10, 15}]

{1, 10}

>> Intersection[{{a, b}, {x, y}},
{{x, x}, {x, y}, {x, z}}]

{{x, y}}

>> Intersection[{c, b, a}]
{a, b, c}

>> Intersection[{1, 2, 3}, {2, 3,
4}, SameTest->Less]

{3}

Join

Join[l1, l2]
concatenates the lists l1 and l2.

Join concatenates lists:
>> Join[{a, b}, {c, d, e}]

{a, b, c, d, e}

>> Join[{{a, b}, {c, d}}, {{1, 2},
{3, 4}}]

{{a, b} , {c, d} , {1, 2} , {3, 4}}

The concatenated expressions may have any
head:
>> Join[a + b, c + d, e + f]

a + b + c + d + e + f

However, it must be the same for all expressions:
>> Join[a + b, c * d]

HeadsPlusandTimesareexpectedtobethesame.

Join [a + b, cd]

Partition

Partition[list, n]
partitions list into sublists of length n.

Parition[list, n, d]
partitions list into sublists of length n
which overlap d indicies.

>> Partition[{a, b, c, d, e, f}, 2]
{{a, b} , {c, d} , {e, f }}

>> Partition[{a, b, c, d, e, f}, 3,
1]

{{a, b, c} , {b, c, d} , {c, d, e} , {d, e, f }}

212

Reverse

Reverse[expr]
reverses the order of expr’s items (on the
top level)

Reverse[expr, n]
reverses the order of items in expr on level
n

Reverse[expr, {n1, n2, ...}]
reverses the order of items in expr on lev-
els n1, n2, ...

>> Reverse[{1, 2, 3}]
{3, 2, 1}

>> Reverse[x[a, b, c]]
x [c, b, a]

>> Reverse[{{1, 2}, {3, 4}}, 1]
{{3, 4} , {1, 2}}

>> Reverse[{{1, 2}, {3, 4}}, 2]
{{2, 1} , {4, 3}}

>> Reverse[{{1, 2}, {3, 4}}, {1,
2}]

{{4, 3} , {2, 1}}

Riffle

Riffle[list, x]
inserts a copy of x between each element
of list.

Riffle[{a1, a2, ...}, {b1, b2, ...}]
interleaves the elements of both lists, re-
turning {a1, b1, a2, b2, ...}.

>> Riffle[{a, b, c}, x]
{a, x, b, x, c}

>> Riffle[{a, b, c}, {x, y, z}]

{a, x, b, y, c, z}

>> Riffle[{a, b, c, d, e, f}, {x, y
, z}]

{a, x, b, y, c, z, d, x, e, y, f }

RotateLeft

RotateLeft[expr]
rotates the items of expr’ by one item to
the left.

RotateLeft[expr, n]
rotates the items of expr’ by n items to the
left.

RotateLeft[expr, {n1, n2, ...}]
rotates the items of expr’ by n1 items to
the left at the first level, by n2 items to
the left at the second level, and so on.

>> RotateLeft[{1, 2, 3}]
{2, 3, 1}

>> RotateLeft[Range[10], 3]

{4, 5, 6, 7, 8, 9, 10, 1, 2, 3}

>> RotateLeft[x[a, b, c], 2]
x [c, a, b]

>> RotateLeft[{{a, b, c}, {d, e, f
}, {g, h, i}}, {1, 2}]

{{ f , d, e} , {i, g, h} , {c, a, b}}

RotateRight

RotateRight[expr]
rotates the items of expr’ by one item to
the right.

RotateRight[expr, n]
rotates the items of expr’ by n items to the
right.

RotateRight[expr, {n1, n2, ...}]
rotates the items of expr’ by n1 items to
the right at the first level, by n2 items to
the right at the second level, and so on.

>> RotateRight[{1, 2, 3}]

{3, 1, 2}

>> RotateRight[Range[10], 3]

{8, 9, 10, 1, 2, 3, 4, 5, 6, 7}

>> RotateRight[x[a, b, c], 2]

x [b, c, a]

>> RotateRight[{{a, b, c}, {d, e, f
}, {g, h, i}}, {1, 2}]

{{h, i, g} , {b, c, a} , {e, f , d}}

213

Tally

Tally[list]
counts and returns the number of oc-
curences of objects and returns the result
as a list of pairs {object, count}.

Tally[list, test]
counts the number of occurences of ob-
jects and uses $test to determine if two
objects should be counted in the same
bin.

>> Tally[{a, b, c, b, a}]

{{a, 2} , {b, 2} , {c, 1}}

Tally always returns items in the order as they
first appear in list:
>> Tally[{b, b, a, a, a, d, d, d, d

, c}]

{{b, 2} , {a, 3} , {d, 4} , {c, 1}}

Union

Union[a, b, ...]
gives the union of the given set or sets.
The resulting list will be sorted and each
element will only occur once.

>> Union[{5, 1, 3, 7, 1, 8, 3}]
{1, 3, 5, 7, 8}

>> Union[{a, b, c}, {c, d, e}]
{a, b, c, d, e}

>> Union[{c, b, a}]
{a, b, c}

>> Union[{{a, 1}, {b, 2}}, {{c, 1},
{d, 3}}, SameTest->(SameQ[Last

[#1],Last[#2]]&)]

{{b, 2} , {c, 1} , {d, 3}}

>> Union[{1, 2, 3}, {2, 3, 4},
SameTest->Less]

{1, 2, 2, 3, 4}

214

29. Statistics, Moments, and Generating
Functions

Moments or combinations of moments are used to summarize a distribution or data. Mean is used to in-
dicate a center location, variance and standard deviation are used to indicate dispersion and covariance,
and correlation to indicate dependence.

Contents

Basic statistics 215
Median 215
Quantile 215

Special Moments . . . 215
Correlation 215
Covariance 216
Kurtosis 216

Skewness 216
StandardDeviation 216
Variance 216

Basic statistics
Basic statistic

Median

Median[list]
returns the median of list.

>> Median[{26, 64, 36}]
36

For lists with an even number of elements, Me-
dian returns the mean of the two middle values:
>> Median[{-11, 38, 501, 1183}]

539
2

Passing a matrix returns the medians of the re-
spective columns:
>> Median[{{100, 1, 10, 50}, {-1,

1, -2, 2}}]{
99
2

, 1, 4, 26
}

Quantile

Quantile[list, q]
returns the qth quantile of list.

>> Quantile[Range[11], 1/3]
4

>> Quantile[Range[16], 1/4]
5

Special Moments
Special Moment

Correlation

Correlation[a, b]
computes Pearson’s correlation of two
equal-sized vectors a and b.

An example from Wikipedia:
>> Correlation[{10, 8, 13, 9, 11,

14, 6, 4, 12, 7, 5}, {8.04,
6.95, 7.58, 8.81, 8.33, 9.96,
7.24, 4.26, 10.84, 4.82, 5.68}]

0.816421

Covariance

Covariance[a, b]
computes the covariance between the
equal-sized vectors a and b.

215

>> Covariance[{0.2, 0.3, 0.1},
{0.3, 0.3, -0.2}]

0.025

Kurtosis

Kurtosis[list]
gives the Pearson measure of kurtosis for
list (a measure of existing outliers).

>> Kurtosis[{1.1, 1.2, 1.4, 2.1,
2.4}]

1.42098

Skewness

Skewness[list]
gives Pearson’s moment coefficient of
skewness for list (a measure for estimat-
ing the symmetry of a distribution).

>> Skewness[{1.1, 1.2, 1.4, 2.1,
2.4}]

0.407041

StandardDeviation

StandardDeviation[list]
computes the standard deviation of $list.
list may consist of numerical values or
symbols. Numerical values may be real
or complex.

StandardDeviation[{{a1, a2, ...}, {b1, b2, ...},
...}] will yield {StandardDeviation[{a1, b1, ...},
StandardDeviation[{a2, b2, ...}], ...}.

>> StandardDeviation[{1, 2, 3}]
1

>> StandardDeviation[{7, -5, 101,
100}]
√

13 297
2

>> StandardDeviation[{a, a}]
0

>> StandardDeviation[{{1, 10}, {-1,
20}}]{√

2, 5
√

2
}

Variance

Variance[list]
computes the variance of $list. list may
consist of numerical values or symbols.
Numerical values may be real or com-
plex.

Variance[{{a1, a2, ...}, {b1, b2, ...}, ...}] will yield
{Variance[{a1, b1, ...}, Variance[{a2, b2, ...}], ...}.

>> Variance[{1, 2, 3}]
1

>> Variance[{7, -5, 101, 3}]
7 475

3

>> Variance[{1 + 2I, 3 - 10I}]
74

>> Variance[{a, a}]
0

>> Variance[{{1, 3, 5}, {4, 10,
100}}]{

9
2

,
49
2

,
9 025

2

}

216

30. Integer and Number-Theoretical Functions

Contents

Algebraic Manipulation 218
Apart 218
Cancel 218
Coefficient 219
CoefficientArrays . 219
CoefficientList . . 220
Collect 220
Denominator . . . 220
Expand 221
ExpandAll 221
ExpandDenomi-

nator . . . 221
Exponent 222
Factor 222
FactorTermsList . 222
FullSimplify . . . 222
MinimalPolynomial 223
Numerator 223
PolynomialQ . . . 223
PowerExpand . . 223
Simplify 223
Together 224
Variables 224

Mathematical Constants 224
Catalan 224
ComplexInfinity . 224
Degree 224
E 224
EulerGamma . . . 225
Glaisher 225
GoldenRatio . . . 225
Indeterminate . . 225
Infinity 225
Khinchin 225
Pi 225

Calculus 226
Complexes 226
D 226
Derivative (’) . . . 227
DiscreteLimit . . . 227
FindRoot 228

Integers 228
Integrate 228
Limit 229
O 229
Reals 229
Root 229
Series 229
SeriesData 229
Solve 230

Differential Equations 230
C 231
DSolve 231

Exponential,
Trigonometric
and Hyperbolic
Functions 231
AnglePath 232
AngleVector . . . 232
ArcCos 232
ArcCosh 232
ArcCot 232
ArcCoth 233
ArcCsc 233
ArcCsch 233
ArcSec 233
ArcSech 233
ArcSin 233
ArcSinh 233
ArcTan 234
ArcTanh 234
Cos 234
Cosh 234
Cot 234
Coth 234
Csc 234
Csch 234
Exp 235
Haversine 235
InverseHaversine . 235
Log 235
Log10 235
Log2 235

LogisticSigmoid . 236
Sec 236
Sech 236
Sin 236
Sinh 236
Tan 236
Tanh 236

Integer Functions . . . 236
BitLength 237
Ceiling 237
DigitCount 237
Floor 237
FromDigits 238
IntegerDigits . . . 238
IntegerLength . . 239
IntegerReverse . . 239
IntegerString . . . 239

Linear algebra 239
BrayCurtisDistance 239
CanberraDistance 240
ChessboardDistance 240
CosineDistance . . 240
Cross 240
DesignMatrix . . . 240
Det 240
Eigensystem . . . 241
Eigenvalues . . . 241
Eigenvectors . . . 241
EuclideanDistance 242
Inverse 242
LeastSquares . . . 242
LinearModelFit . . 242
LinearSolve 243
ManhattanDistance 243
MatrixExp 243
MatrixPower . . . 243
MatrixRank 243
Norm 244
Normalize 244
NullSpace 244
PseudoInverse . . 244

217

QRDecomposition 244
RowReduce 245
SingularValueDe-

composition 245
SquaredEuclide-

anDistance 245
Tr 245
VectorAngle . . . 245

Number theoretic
functions 245
ContinuedFraction 245
Divisors 246

FactorInteger . . . 246
FractionalPart . . 246
FromContinued-

Fraction . . 246
IntegerExponent . 246
MantissaExponent 247
NextPrime 247
PartitionsP 247
Prime 247
PrimePi 247
PrimePowerQ . . 247

RandomPrime . . 248
Random number

generation 248
Random 248
RandomChoice . . 249
RandomComplex . 249
RandomInteger . . 249
RandomReal . . . 250
RandomSample . 250
$RandomState . . 250
SeedRandom . . . 251

Algebraic Manipulation
Algebraic Manipulation

Apart

Apart[expr]
writes expr as a sum of individual frac-
tions.

Apart[expr, var]
treats var as the main variable.

>> Apart[1 / (x^2 + 5x + 6)]
1

2 + x
− 1

3 + x

When several variables are involved, the results
can be different depending on the main variable:
>> Apart[1 / (x^2 - y^2), x]

− 1
2y

(
x + y

) +
1

2y
(

x − y
)

>> Apart[1 / (x^2 - y^2), y]
1

2x
(
x + y

) +
1

2x
(
x − y

)
Apart is Listable:
>> Apart[{1 / (x^2 + 5x + 6)}]{

1
2 + x

− 1
3 + x

}
But it does not touch other expressions:
>> Sin[1 / (x ^ 2 - y ^ 2)] //

Apart

Sin
[

1
x2 − y2

]

Cancel

Cancel[expr]
cancels out common factors in numera-
tors and denominators.

>> Cancel[x / x ^ 2]
1
x

Cancel threads over sums:
>> Cancel[x / x ^ 2 + y / y ^ 2]

1
x

+
1
y

>> Cancel[f[x] / x + x * f[x] / x ^
2]

2 f [x]
x

Coefficient

Coefficient[expr, form]
returns the coefficient of form in the poly-
nomial expr.

Coefficient[expr, form, n]
return the coefficient of form∧n in expr.

>> Coefficient[(x + y)^4, (x^2)* (y
^2)]

6

>> Coefficient[a x^2 + b y^3 + c x
+ d y + 5, x]
c

>> Coefficient[(x + 3 y)^5, x]

405y4

218

>> Coefficient[(x + 3 y)^5, x * y
^4]

405

>> Coefficient[(x + 2)/(y - 3)+ (x
+ 3)/(y - 2), x]

1
−3 + y

+
1

−2 + y

>> Coefficient[x*Cos[x + 3] + 6*y,
x]

Cos [3 + x]

>> Coefficient[(x + 1)^3, x, 2]
3

>> Coefficient[a x^2 + b y^3 + c x
+ d y + 5, y, 3]

b

Find the free term in a polynomial:
>> Coefficient[(x + 2)^3 + (x + 3)

^2, x, 0]

17

>> Coefficient[(x + 2)^3 + (x + 3)
^2, y, 0]

(2 + x)3 + (3 + x)2

>> Coefficient[a x^2 + b y^3 + c x
+ d y + 5, x, 0]

5 + by3 + dy

CoefficientArrays

CoefficientArrays[polys, vars]
returns a list of arrays of coefficients of
the variables vars in the polynomial poly.

>> CoefficientArrays[1 + x^3, x]

{1, {0} , {{0}} , {{{1}}}}

>> CoefficientArrays[1 + x y+ x^3,
{x, y}]

{1, {0, 0} , {{0, 1} , {0, 0}} , {{{1,
0} , {0, 0}} , {{0, 0} , {0, 0}}}}

>> CoefficientArrays[{1 + x^2, x y
}, {x, y}]

{{1, 0} , {{0, 0} , {0, 0}} , {{{1,
0} , {0, 0}} , {{0, 1} , {0, 0}}}}

>> CoefficientArrays[(x+y+Sin[z])
^3, {x,y}]{

Sin [z]3 ,
{

3Sin [z]2 , 3Sin [

z]2
}

, {{3Sin [z] , 6Sin [z]} ,

{0, 3Sin [z]}} , {{{1, 3} ,

{0, 3}} , {{0, 0} , {0, 1}}}
}

>> CoefficientArrays[(x + y + Sin[z
])^3, {x, z}]

(x+y+Sin[z])3isnotapolynomialin{x, z}

CoefficientArrays
[

(
x + y + Sin [z]

)3 , {x, z}
]

CoefficientList

CoefficientList[poly, var]
returns a list of coefficients of powers of
var in poly, starting with power 0.

CoefficientList[poly, {var1, var2,
...}]

returns an array of coefficients of the vari.

>> CoefficientList[(x + 3)^5, x]
{243, 405, 270, 90, 15, 1}

>> CoefficientList[(x + y)^4, x]{
y4, 4y3, 6y2, 4y, 1

}
>> CoefficientList[a x^2 + b y^3 +

c x + d y + 5, x]{
5 + by3 + dy, c, a

}
>> CoefficientList[(x + 2)/(y - 3)+

x/(y - 2), x]{
2

−3 + y
,

1
−3 + y

+
1

−2 + y

}
>> CoefficientList[(x + y)^3, z]{(

x + y
)3
}

>> CoefficientList[a x^2 + b y^3 +
c x + d y + 5, {x, y}]

{{5, d, 0, b} , {c, 0, 0, 0} , {a, 0, 0, 0}}

219

>> CoefficientList[(x - 2 y + 3 z)
^3, {x, y, z}]

{{{0, 0, 0, 27} , {0, 0, − 54, 0} ,
{0, 36, 0, 0} , {−8, 0, 0, 0}} , {{0,
0, 27, 0} , {0, − 36, 0, 0} , {12,
0, 0, 0} , {0, 0, 0, 0}} , {{0, 9, 0,
0} , {−6, 0, 0, 0} , {0, 0, 0, 0} ,
{0, 0, 0, 0}} , {{1, 0, 0, 0} , {0, 0,
0, 0} , {0, 0, 0, 0} , {0, 0, 0, 0}}}

Collect

Collect[expr, x]
Expands expr and collect together terms
having the same power of x.

Collect[expr, {x_1, x_2, ...}]
Expands expr and collect together terms
having the same powers of x_1, x_2,

Collect[expr, {x_1, x_2, ...}, filter]
After collect the terms, applies filter to
each coefficient.

>> Collect[(x+y)^3, y]

x3 + 3x2y + 3xy2 + y3

>> Collect[2 Sin[x z] (x+2 y^2 +
Sin[y] x), y]

2xSin [xz] + 2xSin [
xz] Sin

[
y
]

+ 4y2Sin [xz]

>> Collect[3 x y+2 Sin[x z] (x+2 y
^2 + x)+ (x+y)^3, y]

4xSin [

xz]+x3 +y
(

3x+3x2
)

+y2 (3x+4Sin [

xz]) + y3

>> Collect[3 x y+2 Sin[x z] (x+2 y
^2 + x)+ (x+y)^3, {x,y}]

4xSin [xz]+ x3 +3xy +3x2y +4y2Sin [
xz] + 3xy2 + y3

>> Collect[3 x y+2 Sin[x z] (x+2 y
^2 + x)+ (x+y)^3, {x,y}, h]

xh [4Sin [xz]] + x3h [1] + xyh [
3] + x2yh [3] + y2h [4Sin [
xz]] + xy2h [3] + y3h [1]

Denominator

Denominator[expr]
gives the denominator in expr.

>> Denominator[a / b]
b

>> Denominator[2 / 3]
3

>> Denominator[a + b]
1

Expand

Expand[expr]
expands out positive integer powers and
products of sums in expr, as well as
trigonometric identities.

Expand[expr, target]
just expands those parts involving target.

>> Expand[(x + y)^ 3]

x3 + 3x2y + 3xy2 + y3

>> Expand[(a + b)(a + c + d)]

a2 + ab + ac + ad + bc + bd

>> Expand[(a + b)(a + c + d)(e + f)
+ e a a]

2a2e + a2 f + abe + ab f + ace + ac f
+ ade + ad f + bce + bc f + bde + bd f

>> Expand[(a + b)^ 2 * (c + d)]

a2c + a2d + 2abc + 2abd + b2c + b2d

>> Expand[(x + y)^ 2 + x y]

x2 + 3xy + y2

>> Expand[((a + b)(c + d))^ 2 + b
(1 + a)]

a2c2 + 2a2cd + a2d2 + b + ab + 2abc2

+ 4abcd + 2abd2 + b2c2 + 2b2cd + b2d2

Expand expands items in lists and rules:
>> Expand[{4 (x + y), 2 (x + y)-> 4

(x + y)}]

{4x + 4y, 2x + 2y− > 4x + 4y}

Expand expands trigonometric identities

220

>> Expand[Sin[x + y], Trig -> True]

Cos [x] Sin
[
y
]

+ Cos
[
y
]

Sin [x]

>> Expand[Tanh[x + y], Trig -> True
]

Cosh [x] Sinh
[
y
]

Cosh [x] Cosh
[
y
]

+ Sinh [x] Sinh
[
y
]

+
Cosh

[
y
]

Sinh [x]
Cosh [x] Cosh

[
y
]

+ Sinh [x] Sinh
[
y
]

Expand does not change any other expression.
>> Expand[Sin[x (1 + y)]]

Sin
[
x
(
1 + y

)]
Using the second argument, the expression only
expands those subexpressions containing pat:
>> Expand[(x+a)^2+(y+a)^2+(x+y)(x+a

), y]

a2 + 2ay + x (a + x) + y (a + x) + y2 + (a + x)2

Expand also works in Galois fields
>> Expand[(1 + a)^12, Modulus -> 3]

1 + a3 + a9 + a12

>> Expand[(1 + a)^12, Modulus -> 4]

1 + 2a2 + 3a4 + 3a8 + 2a10 + a12

ExpandAll

ExpandAll[expr]
expands out negative integer powers and
products of sums in expr.

ExpandAll[expr, target]
just expands those parts involving target.

>> ExpandAll[(a + b)^ 2 / (c + d)
^2]

a2

c2 + 2cd + d2 +
2ab

c2 + 2cd + d2

+
b2

c2 + 2cd + d2

ExpandAll descends into sub expressions
>> ExpandAll[(a + Sin[x (1 + y)])

^2]

2aSin
[
x + xy

]
+ a2 + Sin

[
x + xy

]2

>> ExpandAll[Sin[(x+y)^2]]

Sin
[

x2 + 2xy + y2
]

>> ExpandAll[Sin[(x+y)^2], Trig->
True]

−Sin
[

x2
]

Sin
[
2xy

]
Sin

[
y2
]

+ Cos
[

x2
]

Cos
[
2xy

]
Sin

[
y2
]

+ Cos
[

x2
]

Cos
[
y2
]

Sin
[

2xy
]

+ Cos
[
2xy

]
Cos

[
y2
]

Sin
[

x2
]

ExpandAll also expands heads
>> ExpandAll[((1 + x)(1 + y))[x]](

1 + x + y + xy
)

[x]

ExpandAll can also work in finite fields
>> ExpandAll[(1 + a)^ 6 / (x + y)

^3, Modulus -> 3]

1 + 2a3 + a6

x3 + y3

ExpandDenominator

ExpandDenominator[expr]
expands out negative integer powers and
products of sums in expr.

>> ExpandDenominator[(a + b)^ 2 /
((c + d)^2 (e + f))]

(a + b)2

c2e + c2 f + 2cde + 2cd f + d2e + d2 f

Exponent

Exponent[expr, form]
returns the maximum power with which
form appears in the expanded form of
expr.

Exponent[expr, form, h]
applies h to the set of exponents with
which form appears in expr.

>> Exponent[5 x^2 - 3 x + 7, x]
2

221

>> Exponent[(x^3 + 1)^2 + 1, x]
6

>> Exponent[x^(n + 1)+ Sqrt[x] + 1,
x]

Max
[

1
2

, 1 + n
]

>> Exponent[x / y, y]
−1

>> Exponent[(x^2 + 1)^3 - 1, x, Min
]

2

>> Exponent[0, x]
−∞

>> Exponent[1, x]
0

Factor

Factor[expr]
factors the polynomial expression expr.

>> Factor[x ^ 2 + 2 x + 1]

(1 + x)2

>> Factor[1 / (x^2+2x+1)+ 1 / (x
^4+2x^2+1)]

2 + 2x + 3x2 + x4

(1 + x)2 (1 + x2
)2

FactorTermsList

FactorTermsList[poly]
returns a list of 2 elements. The first ele-
ment is the numerical factor in poly. The
second one is the remaining of the poly-
nomial with numerical factor removed

FactorTermsList[poly, {x1, x2, ...}]
returns a list of factors in poly. The first
element is the numerical factor in poly.
The next ones are factors that are inde-
pendent of variables lists which are cre-
ated by removing each variable xi from
right to left. The last one is the remain-
ing of polynomial after dividing poly to
all previous factors

>> FactorTermsList[2 x^2 - 2]{
2, − 1 + x2

}
>> FactorTermsList[x^2 - 2 x + 1]{

1, 1 − 2x + x2
}

>> f = 3 (-1 + 2 x)(-1 + y)(1 - a)

3 (−1 + 2x)
(
−1 + y

)
(1 − a)

>> FactorTermsList[f]
{−3, − 1 + a − 2ax − ay

+ 2x + y − 2xy + 2axy}

>> FactorTermsList[f, x]
{−3, 1 − a − y + ay, − 1 + 2x}

FullSimplify

FullSimplify[expr]
simplifies expr using an extended set of
simplification rules.

FullSimplify[expr, assump]
simplifies expr assuming assump instead
of Assumptions.

TODO: implement the extension. By now, this

does the same than Simplify...
>> FullSimplify[2*Sin[x]^2 + 2*Cos[

x]^2]

2

MinimalPolynomial

MinimalPolynomial[s, x]
gives the minimal polynomial in x for
which the algebraic number s is a root.

>> MinimalPolynomial[7, x]
−7 + x

>> MinimalPolynomial[Sqrt[2] + Sqrt
[3], x]

1 − 10x2 + x4

>> MinimalPolynomial[Sqrt[1 + Sqrt
[3]], x]

−2 − 2x2 + x4

222

>> MinimalPolynomial[Sqrt[I + Sqrt
[6]], x]

49 − 10x4 + x8

Numerator

Numerator[expr]
gives the numerator in expr.

>> Numerator[a / b]
a

>> Numerator[2 / 3]
2

>> Numerator[a + b]
a + b

PolynomialQ

PolynomialQ[expr, var]
returns True if expr is a polynomial in var,
and returns False otherwise.

PolynomialQ[expr, {var1, ...}]
tests whether expr is a polynomial in the
vari.

>> PolynomialQ[x^3 - 2 x/y + 3xz, x
]

True

>> PolynomialQ[x^3 - 2 x/y + 3xz, y
]

False

>> PolynomialQ[f[a] + f[a]^2, f[a]]
True

>> PolynomialQ[x^2 + axy^2 - bSin[c
], {x, y}]

True

>> PolynomialQ[x^2 + axy^2 - bSin[c
], {a, b, c}]

False

PowerExpand

PowerExpand[expr]
expands out powers of the form (x^y)^z
and (x*y)^z in expr.

>> PowerExpand[(a ^ b)^ c]

abc

>> PowerExpand[(a * b)^ c]

acbc

PowerExpand is not correct without certain as-
sumptions:
>> PowerExpand[(x ^ 2)^ (1/2)]

x

Simplify

Simplify[expr]
simplifies expr.

Simplify[expr, assump]
simplifies expr assuming assump instead
of Assumptions.

>> Simplify[2*Sin[x]^2 + 2*Cos[x
]^2]

2

>> Simplify[x]
x

>> Simplify[f[x]]

f [x]

Simplify over conditional expressions uses
$Assumptions, or assump to evaluate the
condition: # TODO: enable this once the
logic for conditional expression # be restau-
red. # » $Assumptions={a <= 0}; # » Sim-
plify[ConditionalExpression[1, a > 0]] # = Unde-
fined # » Simplify[ConditionalExpression[1, a >
0], { a > 0 }] # = 1

Together

Together[expr]
writes sums of fractions in expr together.

223

>> Together[a / c + b / c]

a + b
c

Together operates on lists:
>> Together[{x / (y+1)+ x / (y+1)

^2}]{
x
(
2 + y

)(
1 + y

)2

}

But it does not touch other functions:
>> Together[f[a / c + b / c]]

f
[

a
c

+
b
c

]

Variables

Variables[expr]
gives a list of the variables that appear in
the polynomial expr.

>> Variables[a x^2 + b x + c]
{a, b, c, x}

>> Variables[{a + b x, c y^2 + x
/2}]

{a, b, c, x, y}

>> Variables[x + Sin[y]]{
x, Sin

[
y
]}

Mathematical Constants
Mathematical Constants
Numeric, Arithmetic, or Symbolic constants like
Pi, E, or Infinity.

Catalan

Catalan
is Catalan’s constant with numerical
value ≃ 0.915966.

>> Catalan // N
0.915965594177219

>> N[Catalan, 20]
0.91596559417721901505

ComplexInfinity

ComplexInfinity
represents an infinite complex quantity of
undetermined direction.

>> 1 / ComplexInfinity
0

>> ComplexInfinity * Infinity

ComplexInfinity

>> FullForm[ComplexInfinity]

DirectedInfinity []

Degree

Degree
is the number of radians in one degree. It
has a numerical value of π / 180.

>> Cos[60 Degree]
1
2

Degree has the value of Pi / 180
>> Degree == Pi / 180

True

>> N[\[Degree]] == N[Degree]
True

E

E
is the constant e with numerical value ≃
2.71828.

>> N[E]
2.71828

>> N[E, 50]
2.718281828459045235360287˜

˜4713526624977572470937000

EulerGamma

EulerGamma
is Euler’s constant γ with numerial value
≃ 0.577216.

224

>> EulerGamma // N
0.577216

>> N[EulerGamma, 40]
0.577215664901532860˜

˜6065120900824024310422

Glaisher

Glaisher
is Glaisher’s constant, with numerical
value ≃ 1.28243.

>> N[Glaisher]
1.28242712910062

>> N[Glaisher, 50]
1.282427129100622636875342˜

˜5688697917277676889273250

1.2824271291006219541941391071304678916931152343750

GoldenRatio

GoldenRatio
is the golden ratio, = (1+Sqrt[5])/2.

>> GoldenRatio // N
1.61803398874989

>> N[GoldenRatio, 40]
1.618033988749894848˜

˜204586834365638117720

Indeterminate

Indeterminate
represents an indeterminate result.

>> 0^0

Indeterminateexpression00encountered.

Indeterminate

>> Tan[Indeterminate]
Indeterminate

Infinity

Infinity
represents an infinite real quantity.

>> 1 / Infinity
0

>> Infinity + 100
∞

Use Infinity in sum and limit calculations:
>> Sum[1/x^2, {x, 1, Infinity}]

Pi2

6

Khinchin

Khinchin
is Khinchin’s constant, with numerical
value ≃ 2.68545.

>> N[Khinchin]
2.68545200106531

>> N[Khinchin, 50]
2.685452001065306445309714˜

˜8354817956938203822939945

= 2.6854520010653075701156922150403261184692382812500

Pi

Pi
is the constant π.

>> N[Pi]
3.14159

Pi to a numeric precision of 20 digits:
>> N[Pi, 20]

3.1415926535897932385

Note that the above is not the same thing as
the number of digits after the decimal point.
This may differ from similar concepts from other
mathematical libraries, including those which
Mathics uses!
Use numpy to compute Pi to 20 digits:
>> N[Pi, 20, Method->"numpy"]

3.1415926535897930000

“sympy” is the default method.
>> Attributes[Pi]

{Constant, Protected, ReadProtected}

225

Calculus
Calculu

Complexes

Complexes
is the set of complex numbers.

D

D[f , x]
gives the partial derivative of f with re-
spect to x.

D[f , x, y, ...]
differentiates successively with respect to
x, y, etc.

D[f , {x, n}]
gives the multiple derivative of order n.

D[f , {{x1, x2, ...}}]
gives the vector derivative of f with re-
spect to x1, x2, etc.

First-order derivative of a polynomial:
>> D[x^3 + x^2, x]

2x + 3x2

Second-order derivative:
>> D[x^3 + x^2, {x, 2}]

2 + 6x

Trigonometric derivatives:
>> D[Sin[Cos[x]], x]

−Cos [Cos [x]] Sin [x]

>> D[Sin[x], {x, 2}]
−Sin [x]

>> D[Cos[t], {t, 2}]
−Cos [t]

Unknown variables are treated as constant:
>> D[y, x]

0

>> D[x, x]
1

>> D[x + y, x]
1

Derivatives of unknown functions are repre-
sented using Derivative:
>> D[f[x], x]

f ′ [x]

>> D[f[x, x], x]

f (0,1) [x, x] + f (1,0) [x, x]

>> D[f[x, x], x] // InputForm

Derivative [0, 1]
[

f
]

[x, x]
+ Derivative [1, 0]

[
f
]

[x, x]

Chain rule:
>> D[f[2x+1, 2y, x+y], x]

2 f (1,0,0) [1 + 2x, 2y,

x + y
]

+ f (0,0,1) [1 + 2x, 2y, x + y
]

>> D[f[x^2, x, 2y], {x,2}, y] //
Expand

8x f (1,1,1)
[

x2, x, 2y
]

+ 8x2 f (2,0,1)
[

x2, x, 2y
]

+ 2 f (0,2,1)
[

x2, x,

2y
]

+ 4 f (1,0,1)
[

x2, x, 2y
]

Compute the gradient vector of a function:
>> D[x ^ 3 * Cos[y], {{x, y}}]{

3x2Cos
[
y
]

, − x3Sin
[
y
]}

Hesse matrix:
>> D[Sin[x] * Cos[y], {{x,y}, 2}]{{

−Cos
[
y
]

Sin [x] , − Cos [
x] Sin

[
y
]}

,
{
−Cos [x] Sin

[
y
]

, − Cos
[
y
]

Sin [x]
}}

Derivative (’)

Derivative[n][f]
represents the nth derivative of the func-
tion f.

Derivative[n1, n2, ...][f]
represents a multivariate derivative.

>> Derivative[1][Sin]
Cos [#1] &

>> Derivative[3][Sin]
−Cos [#1] &

226

>> Derivative[2][# ^ 3&]
6#1&

Derivative can be entered using ’:
>> Sin’[x]

Cos [x]

>> (# ^ 4&)’’

12#12&

>> f’[x] // InputForm

Derivative [1]
[

f
]

[x]

>> Derivative[1][#2 Sin[#1]+Cos
[#2]&]

Cos [#1] #2&

>> Derivative[1,2][#2^3 Sin[#1]+Cos
[#2]&]

6Cos [#1] #2&

Deriving with respect to an unknown parameter
yields 0:
>> Derivative[1,2,1][#2^3 Sin[#1]+

Cos[#2]&]

0&

The 0th derivative of any expression is the ex-
pression itself:
>> Derivative[0,0,0][a+b+c]

a + b + c

You can calculate the derivative of custom func-
tions:
>> f[x_] := x ^ 2

>> f’[x]
2x

Unknown derivatives:
>> Derivative[2, 1][h]

h(2,1)

>> Derivative[2, 0, 1, 0][h[g]]

h
[
g
](2,0,1,0)

DiscreteLimit

DiscreteLimit[f , k->Infinity]
gives the limit of the sequence f as k tends
to infinity.

>> DiscreteLimit[n/(n + 1), n ->
Infinity]

1

>> DiscreteLimit[f[n], n ->
Infinity]

f [∞]

FindRoot

FindRoot[f , {x, x0}]
searches for a numerical root of f, starting
from x=x0.

FindRoot[lhs == rhs, {x, x0}]
tries to solve the equation lhs == rhs.

FindRoot by default uses Newton’s method,
so the function of interest should have a first
derivative.
>> FindRoot[Cos[x], {x, 1}]

{x− > 1.5708}

>> FindRoot[Sin[x] + Exp[x],{x, 0}]

{x− > −0.588533}

>> FindRoot[Sin[x] + Exp[x] == Pi,{
x, 0}]

{x− > 0.866815}

FindRoot has attribute HoldAll and effectively
uses Block to localize x. However, in the result x
will eventually still be replaced by its value.
>> x = "I am the result!";

>> FindRoot[Tan[x] + Sin[x] == Pi,
{x, 1}]

{I am the result!− > 1.14911}

>> Clear[x]

FindRoot stops after 100 iterations:
>> FindRoot[x^2 + x + 1, {x, 1}]

Themaximumnumbero f iterationswasexceeded.Theresultmightbeinaccurate.

{x− > −1.}

Find complex roots:
>> FindRoot[x ^ 2 + x + 1, {x, -I}]

{x− > −0.5 − 0.866025I}

The function has to return numerical values:

227

>> FindRoot[f[x] == 0, {x, 0}]
The f unctionvalueisnotanumberatx = 0..

FindRoot
[

f [x] − 0, {x, 0}
]

The derivative must not be 0:
>> FindRoot[Sin[x] == x, {x, 0}]

Encounteredasingularderivativeatthepointx
= 0..
FindRoot

[
Sin [x] − x, {x, 0}

]
>> FindRoot[x^2 - 2, {x, 1,3},

Method->"Secant"]

{x− > 1.41421}

Integers

Integers
is the set of integer numbers.

Limit a solution to integer numbers:
>> Solve[-4 - 4 x + x^4 + x^5 == 0,

x, Integers]

{{x− > −1}}

>> Solve[x^4 == 4, x, Integers]

{}

Integrate

Integrate[f , x]
integrates f with respect to x. The result
does not contain the additive integration
constant.

Integrate[f , {x, a, b}]
computes the definite integral of f with
respect to x from a to b.

Integrate a polynomial:
>> Integrate[6 x ^ 2 + 3 x ^ 2 - 4

x + 10, x]

x
(

10 − 2x + 3x2
)

Integrate trigonometric functions:
>> Integrate[Sin[x] ^ 5, x]

−Cos [x] − Cos [x]5

5
+

2Cos [x]3

3

Definite integrals:
>> Integrate[x ^ 2 + x, {x, 1, 3}]

38
3

>> Integrate[Sin[x], {x, 0, Pi/2}]
1

Some other integrals:
>> Integrate[1 / (1 - 4 x + x^2), x

]
√

3
(

Log
[
− 2 −

√
3 + x

]
− Log

[
− 2 +

√
3 + x

])
6

>> Integrate[4 Sin[x] Cos[x], x]

2Sin [x]2

Integration in TeX:
>> Integrate[f[x], {x, a, b}] //

TeXForm

\int_a∧b f\left[x\right] \, dx

Sometimes there is a loss of precision during in-
tegration. You can check the precision of your re-
sult with the following sequence of commands.
>> Integrate[Abs[Sin[phi]], {phi,

0, 2Pi}] // N

4.

>> % // Precision
MachinePrecision

>> Integrate[ArcSin[x / 3], x]

xArcSin
[x

3

]
+
√

9 − x2

>> Integrate[f’[x], {x, a, b}]

f [b] − f [a]

Limit

Limit[expr, x->x0]
gives the limit of expr as x approaches x0.

Limit[expr, x->x0, Direction->1]
approaches x0 from smaller values.

Limit[expr, x->x0, Direction->-1]
approaches x0 from larger values.

>> Limit[x, x->2]
2

228

>> Limit[Sin[x] / x, x->0]
1

>> Limit[1/x, x->0, Direction->-1]
∞

>> Limit[1/x, x->0, Direction->1]
−∞

O

O[x]^n
Represents a term of order $x∧n$.
O[x]∧n is generated to represent omitted
higher order terms in power series.

>> Series[1/(1-x),{x,0,2}]

1 + x + x2 + O [x]3

Reals

Reals
is the set of real numbers.

Limit a solution to real numbers:
>> Solve[x^3 == 1, x, Reals]

{{x− > 1}}

Root

Root[f , i]
represents the i-th complex root of the
polynomial f

>> Root[#1 ^ 2 - 1&, 1]
−1

>> Root[#1 ^ 2 - 1&, 2]
1

Roots that can’t be represented by radicals:
>> Root[#1 ^ 5 + 2 #1 + 1&, 2]

Root
[
#15 + 2#1 + 1&, 2

]

Series

Series[f , {x, x0, n}]
Represents the series expansion around
x=x0 up to order n.

>> Series[Exp[x],{x,0,2}]

1 + x +
1
2

x2 + O [x]3

>> Series[Exp[x^2],{x,0,2}]

1 + x2 + O [x]3

SeriesData

SeriesData[...]
Represents a series expansion

TODO: - Implement sum, product and composi-
tion of series

Solve

Solve[equation, vars]
attempts to solve equation for the vari-
ables vars.

Solve[equation, vars, domain]
restricts variables to domain, which can be
Complexes or Reals or Integers.

>> Solve[x ^ 2 - 3 x == 4, x]
{{x− > −1} , {x− > 4}}

>> Solve[4 y - 8 == 0, y]

{{y− > 2}}

Apply the solution:
>> sol = Solve[2 x^2 - 10 x - 12 ==

0, x]

{{x− > −1} , {x− > 6}}

>> x /. sol
{−1, 6}

Contradiction:
>> Solve[x + 1 == x, x]

{}

Tautology:

229

>> Solve[x ^ 2 == x ^ 2, x]
{{}}

Rational equations:
>> Solve[x / (x ^ 2 + 1)== 1, x]{{

x− >
1
2
− I

2

√
3
}

,{
x− >

1
2

+
I
2

√
3
}}

>> Solve[(x^2 + 3 x + 2)/(4 x - 2)
== 0, x]

{{x− > −2} , {x− > −1}}

Transcendental equations:
>> Solve[Cos[x] == 0, x]{{

x− >
Pi
2

}
,
{

x− >
3Pi
2

}}
Solve can only solve equations with respect to
symbols or functions:
>> Solve[f[x + y] == 3, f[x + y]]{{

f
[
x + y

]
− > 3

}}
>> Solve[a + b == 2, a + b]

a + bisnotavalidvariable.
Solve [a + b==2, a + b]

This happens when solving with respect to an
assigned symbol:
>> x = 3;

>> Solve[x == 2, x]
3isnotavalidvariable.
Solve [False, 3]

>> Clear[x]

>> Solve[a < b, a]
a < bisnotawell − f ormedequation.

Solve [a < b, a]

Solve a system of equations:
>> eqs = {3 x ^ 2 - 3 y == 0, 3 y ^

2 - 3 x == 0};

>> sol = Solve[eqs, {x, y}] //
Simplify{x− > 0, y− > 0} , {x− > 1,

y− > 1} ,
{

x− > −1
2

+
I
2

√
3,

y− > −1
2
− I

2

√
3
}

,x− >

(
1 − I

√
3
)2

4
,

y− > −1
2

+
I
2

√
3

>> eqs /. sol // Simplify

{{True, True} , {True, True} ,
{True, True} , {True, True}}

An underdetermined system:
>> Solve[x^2 == 1 && z^2 == -1, {x,

y, z}]

Equationsmaynotgivesolutions f orall”solve”variables.

{{x− > −1, z− > −I} ,
{x− > −1, z− > I} , {x− > 1,
z− > −I} , {x− > 1, z− > I}}

Domain specification:
>> Solve[x^2 == -1, x, Reals]

{}

>> Solve[x^2 == 1, x, Reals]
{{x− > −1} , {x− > 1}}

>> Solve[x^2 == -1, x, Complexes]

{{x− > −I} , {x− > I}}

>> Solve[4 - 4 * x^2 - x^4 + x^6 ==
0, x, Integers]

{{x− > −1} , {x− > 1}}

Differential Equations
Differential Equation

230

C

C[n]
represents the nth constant in a solution
to a differential equation.

DSolve

DSolve[eq, y[x], x]
solves a differential equation for the func-
tion y[x].

>> DSolve[y’’[x] == 0, y[x], x]

{{y [x]− > xC [2] + C [1]}}

>> DSolve[y’’[x] == y[x], y[x], x]{{
y [x]− > C [1] E−x + C [2] Ex}}

>> DSolve[y’’[x] == y[x], y, x]{{
y− >

(
Function

[
{x} ,

C [1] E−x + C [2] Ex])}}
DSolve can also solve basic PDE
>> DSolve[D[f[x, y], x] / f[x, y] +

3 D[f[x, y], y] / f[x, y] == 2,
f, {x, y}]{{

f− >
(

Function
[
{x, y} ,

E
x
5 + 3y

5 C [1]
[
3x − y

]])}}
>> DSolve[D[f[x, y], x] x + D[f[x,

y], y] y == 2, f[x, y], {x, y}]{{
f
[
x, y

]
− > 2Log [x] + C [1]

[y
x

]}}
>> DSolve[D[y[x, t], t] + 2 D[y[x,

t], x] == 0, y[x, t], {x, t}]

{{y [x, t]− > C [1] [x − 2t]}}

Exponential, Trigonometric and
Hyperbolic Functions
Exponential, Trigonometric and Hyperbolic
Functions
Mathics basically supports all important trigono-
metric and hyperbolic functions.
Numerical values and derivatives can be com-
puted; however, most special exact values and

simplification rules are not implemented yet.

AnglePath

AnglePath[{phi1, phi2, ...}]
returns the points formed by a turtle
starting at {0, 0} and angled at 0 degrees
going through the turns given by angles
phi1, phi2, ... and using distance 1 for each
step.

AnglePath[{{r1, phi1}, {r2, phi2}, ...}]
instead of using 1 as distance, use r1, r2,
... as distances for the respective steps.

AngleVector[phi0, {phi1, phi2, ...}]
returns the points on a path formed by a
turtle starting with direction phi0 instead
of 0.

AngleVector[{x, y}, {phi1, phi2, ...}]
returns the points on a path formed by a
turtle starting at {$x, $y} instead of {0, 0}.

AngleVector[{{x, y}, phi0}, {phi1, phi2,
...}]

specifies initial position {x, y} and initial
direction phi0.

AngleVector[{{x, y}, {dx, dy}}, {phi1,
phi2, ...}]

specifies initial position {x, y} and a slope
{dx, dy} that is understood to be the initial
direction of the turtle.

>> AnglePath[{90 Degree, 90 Degree,
90 Degree, 90 Degree}]

{{0, 0} , {0, 1} , {−1,
1} , {−1, 0} , {0, 0}}

>> AnglePath[{{1, 1}, 90 Degree},
{{1, 90 Degree}, {2, 90 Degree},
{1, 90 Degree}, {2, 90 Degree

}}]

{{1, 1} , {0, 1} , {0,
− 1} , {1, − 1} , {1, 1}}

>> AnglePath[{a, b}]

{{0, 0} , {Cos [a] , Sin [a]} , {Cos [
a] + Cos [a + b] , Sin [a] + Sin [a + b]}}

>> Precision[Part[AnglePath[{N[1/3,
100], N[2/3, 100]}], 2, 1]]

100.

231

>> Graphics[Line[AnglePath[Table
[1.7, {50}]]]]

>> Graphics[Line[AnglePath[
RandomReal[{-1, 1}, {100}]]]]

AngleVector

AngleVector[phi]
returns the point at angle phi on the unit
circle.

AngleVector[{r, phi}]
returns the point at angle phi on a circle of
radius r.

AngleVector[{x, y}, phi]
returns the point at angle phi on a circle of
radius 1 centered at {x, y}.

AngleVector[{x, y}, {r, phi}]
returns point at angle phi on a circle of ra-
dius r centered at {x, y}.

>> AngleVector[90 Degree]

{0, 1}

>> AngleVector[{1, 10}, a]

{1 + Cos [a] , 10 + Sin [a]}

ArcCos

ArcCos[z]
returns the inverse cosine of z.

>> ArcCos[1]
0

>> ArcCos[0]
Pi
2

>> Integrate[ArcCos[x], {x, -1, 1}]
Pi

ArcCosh

ArcCosh[z]
returns the inverse hyperbolic cosine of z.

>> ArcCosh[0]
I
2

Pi

>> ArcCosh[0.]
0. + 1.5708I

>> ArcCosh
[0.00000000000000000000000000000000000000]

1.570796326794896619˜
˜2313216916397514421I

ArcCot

ArcCot[z]
returns the inverse cotangent of z.

>> ArcCot[0]
Pi
2

>> ArcCot[1]
Pi
4

232

ArcCoth

ArcCoth[z]
returns the inverse hyperbolic cotangent
of z.

>> ArcCoth[0]
I
2

Pi

>> ArcCoth[1]
∞

>> ArcCoth[0.0]
0. + 1.5708I

>> ArcCoth[0.5]
0.549306 − 1.5708I

ArcCsc

ArcCsc[z]
returns the inverse cosecant of z.

>> ArcCsc[1]
Pi
2

>> ArcCsc[-1]

−Pi
2

ArcCsch

ArcCsch[z]
returns the inverse hyperbolic cosecant of
z.

>> ArcCsch[0]
ComplexInfinity

>> ArcCsch[1.0]
0.881374

ArcSec

ArcSec[z]
returns the inverse secant of z.

>> ArcSec[1]
0

>> ArcSec[-1]
Pi

ArcSech

ArcSech[z]
returns the inverse hyperbolic secant of z.

>> ArcSech[0]
∞

>> ArcSech[1]
0

>> ArcSech[0.5]
1.31696

ArcSin

ArcSin[z]
returns the inverse sine of z.

>> ArcSin[0]
0

>> ArcSin[1]
Pi
2

ArcSinh

ArcSinh[z]
returns the inverse hyperbolic sine of z.

>> ArcSinh[0]
0

>> ArcSinh[0.]
0.

>> ArcSinh[1.0]
0.881374

ArcTan

ArcTan[z]
returns the inverse tangent of z.

233

>> ArcTan[1]
Pi
4

>> ArcTan[1.0]
0.785398

>> ArcTan[-1.0]
−0.785398

>> ArcTan[1, 1]
Pi
4

ArcTanh

ArcTanh[z]
returns the inverse hyperbolic tangent of
z.

>> ArcTanh[0]

>> ArcTanh[1]
∞

>> ArcTanh[0]

>> ArcTanh[.5 + 2 I]
0.0964156 + 1.12656I

>> ArcTanh[2 + I]
ArcTanh [2 + I]

Cos

Cos[z]
returns the cosine of z.

>> Cos[3 Pi]
−1

Cosh

Cosh[z]
returns the hyperbolic cosine of z.

>> Cosh[0]
1

Cot

Cot[z]
returns the cotangent of z.

>> Cot[0]
ComplexInfinity

>> Cot[1.]
0.642093

Coth

Coth[z]
returns the hyperbolic cotangent of z.

>> Coth[0]
ComplexInfinity

Csc

Csc[z]
returns the cosecant of z.

>> Csc[0]
ComplexInfinity

>> Csc[1] (* Csc[1] in Mathematica
*)

1
Sin [1]

>> Csc[1.]
1.1884

Csch

Csch[z]
returns the hyperbolic cosecant of z.

>> Csch[0]
ComplexInfinity

Exp

Exp[z]
returns the exponential function of z.

234

>> Exp[1]
E

>> Exp[10.0]
22 026.5

>> Exp[x] //FullForm
Power [E, x]

>> Plot[Exp[x], {x, 0, 3}]

0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

Haversine

Haversine[z]
returns the haversine function of z.

>> Haversine[1.5]
0.464631

>> Haversine[0.5 + 2I]
−1.15082 + 0.869405I

InverseHaversine

InverseHaversine[z]
returns the inverse haversine function of
z.

>> InverseHaversine[0.5]
1.5708

>> InverseHaversine[1 + 2.5 I]
1.76459 + 2.33097I

Log

Log[z]
returns the natural logarithm of z.

>> Log[{0, 1, E, E * E, E ^ 3, E ^
x}]{
−∞, 0, 1, 2, 3, Log

[
Ex]}

>> Log[0.]

Indeterminate

>> Plot[Log[x], {x, 0, 5}]

1 2 3 4 5

−1.0

−0.5

0.5

1.0

1.5

Log10

Log10[z]
returns the base-10 logarithm of z.

>> Log10[1000]
3

>> Log10[{2., 5.}]

{0.30103, 0.69897}

>> Log10[E ^ 3]
3

Log [10]

Log2

Log2[z]
returns the base-2 logarithm of z.

>> Log2[4 ^ 8]
16

>> Log2[5.6]
2.48543

>> Log2[E ^ 2]
2

Log [2]

235

LogisticSigmoid

LogisticSigmoid[z]
returns the logistic sigmoid of z.

>> LogisticSigmoid[0.5]
0.622459

>> LogisticSigmoid[0.5 + 2.3 I]
1.06475 + 0.808177I

>> LogisticSigmoid[{-0.2, 0.1,
0.3}]

{0.450166, 0.524979, 0.574443}

Sec

Sec[z]
returns the secant of z.

>> Sec[0]
1

>> Sec[1] (* Sec[1] in Mathematica
*)

1
Cos [1]

>> Sec[1.]
1.85082

Sech

Sech[z]
returns the hyperbolic secant of z.

>> Sech[0]
1

Sin

Sin[z]
returns the sine of z.

>> Sin[0]
0

>> Sin[0.5]
0.479426

>> Sin[3 Pi]
0

>> Sin[1.0 + I]
1.29846 + 0.634964I

>> Plot[Sin[x], {x, -Pi, Pi}]

−3 −2 −1 1 2 3

−1.0

−0.5

0.5

1.0

Sinh

Sinh[z]
returns the hyperbolic sine of z.

>> Sinh[0]
0

Tan

Tan[z]
returns the tangent of z.

>> Tan[0]
0

>> Tan[Pi / 2]
ComplexInfinity

Tanh

Tanh[z]
returns the hyperbolic tangent of z.

>> Tanh[0]
0

Integer Functions
Integer Function

236

BitLength

BitLength[x]
gives the number of bits needed to repre-
sent the integer x. x’s sign is ignored.

>> BitLength[1023]
10

>> BitLength[100]
7

>> BitLength[-5]
3

>> BitLength[0]
0

Ceiling

Ceiling[x]
gives the first integer greater than x.

>> Ceiling[1.2]
2

>> Ceiling[3/2]
2

For complex x, take the ceiling of real an imagi-
nary parts.
>> Ceiling[1.3 + 0.7 I]

2 + I

DigitCount

DigitCount[n, b, d]
returns the number of times digit d occurs
in the base b representation of n.

DigitCount[n, b]
returns a list indicating the number of
times each digit occurs in the base b rep-
resentation of n.

DigitCount[n, b]
returns a list indicating the number of
times each digit occurs in the decimal
representation of n.

>> DigitCount[1022]

{1, 2, 0, 0, 0, 0, 0, 0, 0, 1}

>> DigitCount[Floor[Pi * 10^100]]

{8, 12, 12, 10, 8, 9, 8, 12, 14, 8}

>> DigitCount[1022, 2]

{9, 1}

>> DigitCount[1022, 2, 1]
9

Floor

Floor[x]
gives the smallest integer less than or
equal to x.

Floor[x, a]
gives the smallest multiple of a less than
or equal to x.

>> Floor[10.4]
10

>> Floor[10/3]
3

>> Floor[10]
10

>> Floor[21, 2]
20

>> Floor[2.6, 0.5]
2.5

>> Floor[-10.4]
−11

For complex x, take the floor of real an imagi-
nary parts.
>> Floor[1.5 + 2.7 I]

1 + 2I

For negative a, the smallest multiple of a greater
than or equal to x is returned.
>> Floor[10.4, -1]

11

>> Floor[-10.4, -1]
−10

237

FromDigits

FromDigits[l]
returns the integer corresponding to the
decimal representation given by l. l can
be a list of digits or a string.

FromDigits[l, b]
returns the integer corresponding to the
base b representation given by l. l can be
a list of digits or a string.

>> FromDigits["123"]
123

>> FromDigits[{1, 2, 3}]
123

>> FromDigits[{1, 0, 1}, 1000]
1 000 001

FromDigits can handle symbolic input:
>> FromDigits[{a, b, c}, 5]

c + 5 (5a + b)

Note that FromDigits does not automatically de-
tect if you are providing a non-decimal represen-
tation:
>> FromDigits["a0"]

100

>> FromDigits["a0", 16]
160

FromDigits on empty lists or strings returns 0:
>> FromDigits[{}]

0

>> FromDigits[""]
0

IntegerDigits

IntegerDigits[n]
returns the decimal representation of in-
teger x as list of digits. x’s sign is ignored.

IntegerDigits[n, b]
returns the base b representation of inte-
ger x as list of digits. x’s sign is ignored.

IntegerDigits[n, b, length]
returns a list of length length. If the num-
ber is too short, the list gets padded with
0 on the left. If the number is too long, the
length least significant digits are returned.

>> IntegerDigits[12345]

{1, 2, 3, 4, 5}

>> IntegerDigits[-500]

{5, 0, 0}

>> IntegerDigits[12345, 10, 8]

{0, 0, 0, 1, 2, 3, 4, 5}

>> IntegerDigits[12345, 10, 3]

{3, 4, 5}

>> IntegerDigits[11, 2]

{1, 0, 1, 1}

>> IntegerDigits[123, 8]

{1, 7, 3}

>> IntegerDigits[98765, 20]

{12, 6, 18, 5}

IntegerLength

IntegerLength[x]
gives the number of digits in the base-10
representation of x.

IntegerLength[x, b]
gives the number of base-b digits in x.

>> IntegerLength[123456]
6

>> IntegerLength[10^10000]
10 001

>> IntegerLength[-10^1000]
1 001

238

IntegerLength with base 2:
>> IntegerLength[8, 2]

4

Check that IntegerLength is correct for the first
100 powers of 10:
>> IntegerLength /@ (10 ^ Range

[100])== Range[2, 101]

True

The base must be greater than 1:
>> IntegerLength[3, -2]

Base − 2isnotanintegergreaterthan1.

IntegerLength [3, − 2]

0 is a special case:
>> IntegerLength[0]

0

IntegerReverse

IntegerReverse[n]
returns the integer that has the reverse
decimal representation of x without sign.

IntegerReverse[n, b]
returns the integer that has the reverse
base b represenation of x without sign.

>> IntegerReverse[1234]
4 321

>> IntegerReverse[1022, 2]
511

>> IntegerReverse[-123]
321

IntegerString

IntegerString[n]
returns the decimal representation of in-
teger x as string. x’s sign is ignored.

IntegerString[n, b]
returns the base b representation of inte-
ger x as string. x’s sign is ignored.

IntegerString[n, b, length]
returns a string of length length. If
the number is too short, the string gets
padded with 0 on the left. If the number
is too long, the length least significant dig-
its are returned.

For bases > 10, alphabetic characters a, b, ... are
used to represent digits 11, 12, Note that base
must be an integer in the range from 2 to 36.
>> IntegerString[12345]

12 345

>> IntegerString[-500]
500

>> IntegerString[12345, 10, 8]
00 012 345

>> IntegerString[12345, 10, 3]
345

>> IntegerString[11, 2]
1 011

>> IntegerString[123, 8]
173

>> IntegerString[32767, 16]

7fff

>> IntegerString[98765, 20]
c6i5

Linear algebra
Linear algebra

BrayCurtisDistance

BrayCurtisDistance[u, v]
returns the Bray Curtis distance between
u and v.

>> BrayCurtisDistance[-7, 5]
6

>> BrayCurtisDistance[{-1, -1},
{10, 10}]

11
9

CanberraDistance

CanberraDistance[u, v]
returns the canberra distance between u
and v, which is a weighted version of the
Manhattan distance.

239

>> CanberraDistance[-7, 5]
1

>> CanberraDistance[{-1, -1}, {1,
1}]

2

ChessboardDistance

ChessboardDistance[u, v]
returns the chessboard distance (also
known as Chebyshev distance) between
u and v, which is the number of moves
a king on a chessboard needs to get from
square u to square v.

>> ChessboardDistance[-7, 5]
12

>> ChessboardDistance[{-1, -1}, {1,
1}]

2

CosineDistance

CosineDistance[u, v]
returns the cosine distance between u and
v.

>> N[CosineDistance[{7, 9}, {71,
89}]]

0.0000759646

>> CosineDistance[{a, b}, {c, d}]
1

+
−ac − bd√

Abs [a]2 + Abs [b]2
√

Abs [c]2 + Abs [d]2

Cross

Cross[a, b]
computes the vector cross product of a
and b.

>> Cross[{x1, y1, z1}, {x2, y2, z2
}]

{y1z2 − y2z1,
− x1z2 + x2z1, x1y2 − x2y1}

>> Cross[{x, y}]

{−y, x}

>> Cross[{1, 2}, {3, 4, 5}]
Theargumentsareexpectedtobevectorso f equallength,
andthenumbero f argumentsisexpectedtobe1lessthantheirlength.

Cross
[
{1, 2} , {3, 4, 5}

]

DesignMatrix

DesignMatrix[m, f , x]
returns the design matrix.

>> DesignMatrix[{{2, 1}, {3, 4},
{5, 3}, {7, 6}}, x, x]

{{1, 2} , {1, 3} , {1, 5} , {1, 7}}

>> DesignMatrix[{{2, 1}, {3, 4},
{5, 3}, {7, 6}}, f[x], x]

{{1, f [2]} , {1, f [3]} ,
{1, f [5]} , {1, f [7]}}

Det

Det[m]
computes the determinant of the matrix
m.

>> Det[{{1, 1, 0}, {1, 0, 1}, {0,
1, 1}}]

−2

Symbolic determinant:
>> Det[{{a, b, c}, {d, e, f}, {g, h

, i}}]

aei − a f h − bdi + b f g + cdh − ceg

Eigensystem

Eigensystem[m]
returns the list {Eigenvalues[m],
Eigenvectors[m]}.

240

>> Eigensystem[{{1, 1, 0}, {1, 0,
1}, {0, 1, 1}}]

{{2, − 1, 1} , {{1, 1, 1} ,
{1, − 2, 1} , {−1, 0, 1}}}

Eigenvalues

Eigenvalues[m]
computes the eigenvalues of the matrix
m. By default Sympy’s routine is used.
Sometimes this is slow and less good than
the corresponding mpmath routine. Use
option Method->“mpmath” if you want
to use mpmath’s routine instead.

Numeric eigenvalues are sorted in order of de-
creasing absolute value:
>> Eigenvalues[{{1, 1, 0}, {1, 0,

1}, {0, 1, 1}}]

{2, − 1, 1}

Symbolic eigenvalues:
>> Eigenvalues[{{Cos[theta],Sin[

theta],0},{-Sin[theta],Cos[theta
],0},{0,0,1}}] // Sort{

1, Cos [theta]

+
√

(−1 + Cos [theta]) (1 + Cos [theta]),
Cos [theta]

−
√

(−1 + Cos [theta]) (1 + Cos [theta])
}

>> Eigenvalues[{{7, 1}, {-4, 3}}]

>> Eigenvalues[{{7, 1}, {-4, 3}}]

Eigenvectors

Eigenvectors[m]
computes the eigenvectors of the matrix
m.

>> Eigenvectors[{{1, 1, 0}, {1, 0,
1}, {0, 1, 1}}]

{{1, 1, 1} , {1, − 2, 1} , {−1, 0, 1}}

>> Eigenvectors[{{1, 0, 0}, {0, 1,
0}, {0, 0, 0}}]

{{0, 1, 0} , {1, 0, 0} , {0, 0, 1}}

>> Eigenvectors[{{2, 0, 0}, {0, -1,
0}, {0, 0, 0}}]

{{1, 0, 0} , {0, 1, 0} , {0, 0, 1}}

>> Eigenvectors[{{0.1, 0.2}, {0.8,
0.5}}]

{{−0.355518216481267016676297˜
˜559501705929896062805897153˜
˜500209120909839738411406528˜
˜939551208168268203735351562˜
˜500000000000000000000000000˜
˜000000000000000000000000000˜
˜000000000000000000000000000˜
˜0000000000000, − 1.150481115˜
˜772866118834236549972506478˜
˜611688789589714534394707980˜
˜136107750013252370990812778˜
˜472900390625000000000000000˜
˜000000000000000000000000000˜
˜000000000000000000000000000˜
˜000000000000000000000000000} ,
{−0.628960169645094045731745˜
˜684302104224901929314653543˜
˜850901708147770746704097177˜
˜826042752712965011596679687˜
˜500000000000000000000000000˜
˜000000000000000000000000000˜
˜000000000000000000000000000˜
˜0000000000000, 0.777437524821˜
˜136041447958386087174831147˜
˜822934682708885214954348721˜
˜189125726027668861206620931˜
˜625366210937500000000000000˜
˜000000000000000000000000000˜
˜000000000000000000000000000˜
˜0000000000000000000000000}}

EuclideanDistance

EuclideanDistance[u, v]
returns the euclidean distance between u
and v.

>> EuclideanDistance[-7, 5]
12

241

>> EuclideanDistance[{-1, -1}, {1,
1}]

2
√

2

>> EuclideanDistance[{a, b}, {c, d
}]√

Abs [a − c]2 + Abs [b − d]2

Inverse

Inverse[m]
computes the inverse of the matrix m.

>> Inverse[{{1, 2, 0}, {2, 3, 0},
{3, 4, 1}}]

{{−3, 2, 0} , {2, − 1, 0} , {1, − 2, 1}}

>> Inverse[{{1, 0}, {0, 0}}]
Thematrix{{1, 0}, {0, 0}}issingular.

Inverse
[
{{1, 0} , {0, 0}}

]
>> Inverse[{{1, 0, 0}, {0, Sqrt

[3]/2, 1/2}, {0,-1 / 2, Sqrt
[3]/2}}]{
{1, 0, 0} ,

{
0,

√
3

2
,

− 1
2

}
,

{
0,

1
2

,

√
3

2

}}

LeastSquares

LeastSquares[m, b]
computes the least squares solution to m
x = b, finding an x that solves for b opti-
mally.

>> LeastSquares[{{1, 2}, {2, 3},
{5, 6}}, {1, 5, 3}]{
−28

13
,

31
13

}
>> Simplify[LeastSquares[{{1, 2},

{2, 3}, {5, 6}}, {1, x, 3}]]{
12
13

− 8x
13

, − 4
13

+
7x
13

}

>> LeastSquares[{{1, 1, 1}, {1, 1,
2}}, {1, 3}]

Solving f orunderdeterminedsystemnotimplemented.

LeastSquares
[
{{1, 1,

1} , {1, 1, 2}} , {1, 3}
]

LinearModelFit

LinearModelFit[m, f , x]
returns the design matrix.

>> m = LinearModelFit[{{2, 1}, {3,
4}, {5, 3}, {7, 6}}, x, x];

>> m["BasisFunctions"]

>> m["BestFit"]
0.186441 + 0.779661x

>> m["BestFitParameters"]
{0.186441, 0.779661}

>> m["DesignMatrix"]

{{1, 2} , {1, 3} , {1, 5} , {1, 7}}

>> m["Function"]

>> m["Response"]

{1, 4, 3, 6}

>> m["FitResiduals"]

>> m = LinearModelFit[{{2, 2, 1},
{3, 2, 4}, {5, 6, 3}, {7, 9,
6}}, {Sin[x], Cos[y]}, {x, y}];

>> m["BasisFunctions"]

>> m["Function"]

>> m = LinearModelFit[{{{1, 4}, {1,
5}, {1, 7}}, {1, 2, 3}}];

>> m["BasisFunctions"]

>> m["FitResiduals"]

242

LinearSolve

LinearSolve[matrix, right]
solves the linear equation system matrix
. x = right and returns one correspond-
ing solution x.

>> LinearSolve[{{1, 1, 0}, {1, 0,
1}, {0, 1, 1}}, {1, 2, 3}]

{0, 1, 2}

Test the solution:
>> {{1, 1, 0}, {1, 0, 1}, {0, 1,

1}} . {0, 1, 2}

{1, 2, 3}

If there are several solutions, one arbitrary solu-
tion is returned:
>> LinearSolve[{{1, 2, 3}, {4, 5,

6}, {7, 8, 9}}, {1, 1, 1}]

{−1, 1, 0}

Infeasible systems are reported:
>> LinearSolve[{{1, 2, 3}, {4, 5,

6}, {7, 8, 9}}, {1, -2, 3}]

Linearequationencounteredthathasnosolution.

LinearSolve
[
{{1, 2, 3} , {4,

5, 6} , {7, 8, 9}} , {1, − 2, 3}
]

ManhattanDistance

ManhattanDistance[u, v]
returns the Manhattan distance between
u and v, which is the number of horizon-
tal or vertical moves in the gridlike Man-
hattan city layout to get from u to v.

>> ManhattanDistance[-7, 5]
12

>> ManhattanDistance[{-1, -1}, {1,
1}]

4

MatrixExp

MatrixExp[m]
computes the exponential of the matrix
m.

>> MatrixExp[{{0, 2}, {0, 1}}]

{{1, − 2 + 2E} , {0, E}}

>> MatrixExp[{{1.5, 0.5}, {0.5,
2.0}}]

{{5.16266, 3.02952} ,
{3.02952, 8.19218}}

MatrixPower

MatrixPower[m, n]
computes the nth power of a matrix m.

>> MatrixPower[{{1, 2}, {1, 1}},
10]

{{3 363, 4 756} , {2 378, 3 363}}

>> MatrixPower[{{1, 2}, {2, 5}},
-3]

{{169, − 70} , {−70, 29}}

MatrixRank

MatrixRank[matrix]
returns the rank of matrix.

>> MatrixRank[{{1, 2, 3}, {4, 5,
6}, {7, 8, 9}}]

2

>> MatrixRank[{{1, 1, 0}, {1, 0,
1}, {0, 1, 1}}]

3

>> MatrixRank[{{a, b}, {3 a, 3 b}}]
1

Norm

Norm[m, l]
computes the l-norm of matrix m (cur-
rently only works for vectors!).

Norm[m]
computes the 2-norm of matrix m (cur-
rently only works for vectors!).

>> Norm[{1, 2, 3, 4}, 2]
√

30

243

>> Norm[{10, 100, 200}, 1]
310

>> Norm[{a, b, c}]√
Abs [a]2 + Abs [b]2 + Abs [c]2

>> Norm[{-100, 2, 3, 4}, Infinity]
100

>> Norm[1 + I]
√

2

Normalize

Normalize[v]
calculates the normalized vector v.

Normalize[z]
calculates the normalized complex num-
ber z.

>> Normalize[{1, 1, 1, 1}]{
1
2

,
1
2

,
1
2

,
1
2

}
>> Normalize[1 + I](

1
2

+
I
2

)√
2

NullSpace

NullSpace[matrix]
returns a list of vectors that span the
nullspace of matrix.

>> NullSpace[{{1, 2, 3}, {4, 5, 6},
{7, 8, 9}}]

{{1, − 2, 1}}

>> A = {{1, 1, 0}, {1, 0, 1}, {0,
1, 1}};

>> NullSpace[A]

{}

>> MatrixRank[A]
3

PseudoInverse

PseudoInverse[m]
computes the Moore-Penrose pseudoin-
verse of the matrix m. If m is invertible,
the pseudoinverse equals the inverse.

>> PseudoInverse[{{1, 2}, {2, 3},
{3, 4}}]{{

−11
6

, − 1
3

,
7
6

}
,
{

4
3

,
1
3

, − 2
3

}}
>> PseudoInverse[{{1, 2, 0}, {2, 3,

0}, {3, 4, 1}}]

{{−3, 2, 0} , {2, − 1, 0} , {1, − 2, 1}}

>> PseudoInverse[{{1.0, 2.5}, {2.5,
1.0}}]

{{−0.190476, 0.47619} ,
{0.47619, − 0.190476}}

QRDecomposition

QRDecomposition[m]
computes the QR decomposition of the
matrix m.

>> QRDecomposition[{{1, 2}, {3, 4},
{5, 6}}]{{{√

35
35

,
3
√

35
35

,

√
35
7

}
,{

13
√

210
210

,
2
√

210
105

,

−
√

210
42

}}
,

{{
√

35,

44
√

35
35

}
,

{
0,

2
√

210
35

}}}

RowReduce

RowReduce[matrix]
returns the reduced row-echelon form of
matrix.

244

>> RowReduce[{{1, 0, a}, {1, 1, b
}}]

{{1, 0, a} , {0, 1, − a + b}}

>> RowReduce[{{1, 2, 3}, {4, 5, 6},
{7, 8, 9}}] // MatrixForm 1 0 −1

0 1 2
0 0 0

SingularValueDecomposition

SingularValueDecomposition[m]
calculates the singular value decomposi-
tion for the matrix m.

SingularValueDecomposition returns u, s, w
such that m=u s v, uu=1, vv=1, and s is diago-
nal.
>> SingularValueDecomposition

[{{1.5, 2.0}, {2.5, 3.0}}]

{{{0.538954, 0.842335} , {0.842335
, − 0.538954}} , {{4.63555, 0.} ,
{0., 0.107862}} , {{0.628678, 0.777˜
˜666} , {−0.777666, 0.628678}}}

SquaredEuclideanDistance

SquaredEuclideanDistance[u, v]
returns squared the euclidean distance
between u and v.

>> SquaredEuclideanDistance[-7, 5]
144

>> SquaredEuclideanDistance[{-1,
-1}, {1, 1}]

8

Tr

Tr[m]
computes the trace of the matrix m.

>> Tr[{{1, 2, 3}, {4, 5, 6}, {7, 8,
9}}]

15

Symbolic trace:
>> Tr[{{a, b, c}, {d, e, f}, {g, h,

i}}]

a + e + i

VectorAngle

VectorAngle[u, v]
gives the angles between vectors u and v

>> VectorAngle[{1, 0}, {0, 1}]
Pi
2

>> VectorAngle[{1, 2}, {3, 1}]
Pi
4

>> VectorAngle[{1, 1, 0}, {1, 0,
1}]

Pi
3

Number theoretic functions
Number theoretic function

ContinuedFraction

ContinuedFraction[x, n]
generate the first n terms in the continued
fraction reprentation of x.

ContinuedFraction[x]
the complete continued fraction repre-
sentation for a rational or quadradic irra-
tional number.

>> ContinuedFraction[Pi, 10]
{3, 7, 15, 1, 292, 1, 1, 1, 2, 1}

>> ContinuedFraction[(1 + 2 Sqrt
[3])/5]

{0, 1, {8, 3, 34, 3}}

>> ContinuedFraction[Sqrt[70]]

{8, {2, 1, 2, 1, 2, 16}}

245

Divisors

Divisors[n]
returns a list of the integers that divide n.

>> Divisors[96]
{1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}

>> Divisors[704]
{1, 2, 4, 8, 11, 16, 22, 32,

44, 64, 88, 176, 352, 704}

>> Divisors[{87, 106, 202, 305}]
{{1, 3, 29, 87} , {1, 2, 53, 106} ,
{1, 2, 101, 202} , {1, 5, 61, 305}}

FactorInteger

FactorInteger[n]
returns the factorization of n as a list of
factors and exponents.

>> factors = FactorInteger[2010]

{{2, 1} , {3, 1} , {5, 1} , {67, 1}}

To get back the original number:
>> Times @@ Power @@@ factors

2 010

FactorInteger factors rationals using negative
exponents:
>> FactorInteger[2010 / 2011]

{{2, 1} , {3, 1} , {5, 1} ,
{67, 1} , {2 011, − 1}}

FractionalPart

FractionalPart[n]
finds the fractional part of n.

>> FractionalPart[4.1]
0.1

>> FractionalPart[-5.25]
−0.25

FromContinuedFraction

FromContinuedFraction[list]
reconstructs a number from the list of its
continued fraction terms.

>> FromContinuedFraction[{3, 7, 15,
1, 292, 1, 1, 1, 2, 1}]

1 146 408
364 913

>> FromContinuedFraction[Range[5]]
225
157

IntegerExponent

IntegerExponent[n, b]
gives the highest exponent of b that di-
vides n.

>> IntegerExponent[16, 2]
4

>> IntegerExponent[-510000]
4

>> IntegerExponent[10, b]

IntegerExponent [10, b]

MantissaExponent

MantissaExponent[n]
finds a list containing the mantissa and
exponent of a given number n.

MantissaExponent[n, b]
finds the base b mantissa and exponent of
n.

>> MantissaExponent[2.5*10^20]

{0.25, 21}

>> MantissaExponent[125.24]

{0.12524, 3}

>> MantissaExponent[125., 2]

{0.976563, 7}

>> MantissaExponent[10, b]

MantissaExponent [10, b]

246

NextPrime

NextPrime[n]
gives the next prime after n.

NextPrime[n,k]
gives the kth prime after n.

>> NextPrime[10000]
10 007

>> NextPrime[100, -5]
73

>> NextPrime[10, -5]
−2

>> NextPrime[100, 5]
113

>> NextPrime[5.5, 100]
563

>> NextPrime[5, 10.5]
NextPrime [5, 10.5]

PartitionsP

PartitionsP[n]
return the number p(n) of unrestricted
partitions of the integer n.

>> Table[PartitionsP[k], {k, -2,
12}]

{0, 0, 1, 1, 2, 3, 5, 7, 11,
15, 22, 30, 42, 56, 77}

Prime

Prime[n]
Prime[{n0, n1, ...}]

returns the nth prime number where n is
an positive Integer. If given a list of inte-
gers, the return value is a list with Prime
applied to each.

Note that the first prime is 2, not 1:
>> Prime[1]

2

>> Prime[167]
991

When given a list of integers, a list is returned:
>> Prime[{5, 10, 15}]

{11, 29, 47}

1.2 isn’t an integer
>> Prime[1.2]

Prime [1.2]

Since 0 is less than 1, like 1.2 it is invalid.
>> Prime[{0, 1, 1.2, 3}]

{Prime [0] , 2, Prime [1.2] , 5}

PrimePi

PrimePi[x]
gives the number of primes less than or
equal to x.

PrimePi is the inverse of Prime:
>> PrimePi[2]

1

>> PrimePi[100]
25

>> PrimePi[-1]
0

>> PrimePi[3.5]
2

>> PrimePi[E]
1

PrimePowerQ

PrimePowerQ[n]
returns True if n is a power of a prime
number.

>> PrimePowerQ[9]
True

>> PrimePowerQ[52142]
False

>> PrimePowerQ[-8]
True

>> PrimePowerQ[371293]
True

247

RandomPrime

RandomPrime[{imin, $imax}]
gives a random prime between imin and
imax.

RandomPrime[imax]
gives a random prime between 2 and
imax.

RandomPrime[range, n]
gives a list of n random primes in range.

>> RandomPrime[{14, 17}]
17

>> RandomPrime[{14, 16}, 1]
Therearenoprimesinthespeci f iedinterval.

RandomPrime
[
{14, 16} , 1

]
>> RandomPrime[{8,12}, 3]

{11, 11, 11}

>> RandomPrime[{10,30}, {2,5}]
{{19, 19, 19, 19, 19} ,
{19, 19, 19, 19, 19}}

Random number generation
Random number generation
Random numbers are generated using the
Mersenne Twister.

Random
Legacy function. Superseded by RandomReal,
RandomInteger and RandomComplex.

RandomChoice

RandomChoice[items]
randomly picks one item from items.

RandomChoice[items, n]
randomly picks n items from items. Each
pick in the n picks happens from the
given set of items, so each item can be
picked any number of times.

RandomChoice[items, {n1, n2, ...}]
randomly picks items from items and ar-
ranges the picked items in the nested list
structure described by {n1, n2, ...}.

RandomChoice[weights -> items, n]
randomly picks n items from items and
uses the corresponding numeric values in
weights to determine how probable it is
for each item in items to get picked (in
the long run, items with higher weights
will get picked more often than ones with
lower weight).

RandomChoice[weights -> items]
randomly picks one items from items us-
ing weights weights.

RandomChoice[weights -> items, {n1, n2,
...}]

randomly picks a structured list of items
from items using weights weights.

Note: SeedRandom is used below so we get re-
peatable “random” numbers that we can test.
>> SeedRandom[42]

>> RandomChoice[{a, b, c}]
{c}

>> SeedRandom[42] (* Set for
repeatable randomness *)

>> RandomChoice[{a, b, c}, 20]
{c, a, c, c, a, a, c, b, c, c,

c, c, a, c, b, a, b, b, b, b}

>> SeedRandom[42]

>> RandomChoice[{"a", {1, 2}, x,
{}}, 10]

{x, {} , a, x, x, {} , a, a, x, {1, 2}}

>> SeedRandom[42]

>> RandomChoice[{a, b, c}, {5, 2}]
{{c, a} , {c, c} , {a, a} , {c, b} , {c, c}}

248

>> SeedRandom[42]

>> RandomChoice[{1, 100, 5} -> {a,
b, c}, 20]

{b, b, b, b, b, b, b, b, b, b,
b, c, b, b, b, b, b, b, b, b}

RandomComplex

RandomComplex[{z_min, z_max}]
yields a pseudorandom complex num-
ber in the rectangle with complex corners
z_min and z_max.

RandomComplex[z_max]
yields a pseudorandom complex number
in the rectangle with corners at the origin
and at z_max.

RandomComplex[]
yields a pseudorandom complex number
with real and imaginary parts from 0 to 1.

RandomComplex[range, n]
gives a list of n pseudorandom complex
numbers.

RandomComplex[range, {n1, n2, ...}]
gives a nested list of pseudorandom com-
plex numbers.

>> RandomComplex[]
0.581769 + 0.685436I

>> RandomComplex[{1+I, 5+5I}]
2.86092 + 1.87268I

>> RandomComplex[1+I, 5]

{0.539603 + 0.550787I, 0.289˜
˜271 + 0.725075I, 0.683522 +
0.617513I, 0.492286 + 0.164˜
˜871I, 0.593449 + 0.363578I}

>> RandomComplex[{1+I, 2+2I}, {2,
2}]

{{1.30849 + 1.41458I, 1.191˜
˜59 + 1.29931I} , {1.25355 +
1.02239I, 1.97414 + 1.07719I}}

RandomInteger

RandomInteger[{min, max}]
yields a pseudorandom integer in the
range from min to max inclusive.

RandomInteger[max]
yields a pseudorandom integer in the
range from 0 to max inclusive.

RandomInteger[]
gives 0 or 1.

RandomInteger[range, n]
gives a list of n pseudorandom integers.

RandomInteger[range, {n1, n2, ...}]
gives a nested list of pseudorandom inte-
gers.

>> RandomInteger[{1, 5}]
4

>> RandomInteger[100, {2, 3}] //
TableForm

75 97 20
34 61 73

Calling RandomInteger changes $RandomState:
>> previousState = $RandomState;

>> RandomInteger[]
0

>> $RandomState != previousState
True

RandomReal

RandomReal[{min, max}]
yields a pseudorandom real number in
the range from min to max.

RandomReal[max]
yields a pseudorandom real number in
the range from 0 to max.

RandomReal[]
yields a pseudorandom real number in
the range from 0 to 1.

RandomReal[range, n]
gives a list of n pseudorandom real num-
bers.

RandomReal[range, {n1, n2, ...}]
gives a nested list of pseudorandom real
numbers.

>> RandomReal[]
0.164393

249

>> RandomReal[{1, 5}]
1.84723

RandomSample

RandomSample[items]
randomly picks one item from items.

RandomSample[items, n]
randomly picks n items from items. Each
pick in the n picks happens after the pre-
vious items picked have been removed
from items, so each item can be picked at
most once.

RandomSample[items, {n1, n2, ...}]
randomly picks items from items and ar-
ranges the picked items in the nested list
structure described by {n1, n2, ...}. Each
item gets picked at most once.

RandomSample[weights -> items, n]
randomly picks n items from items and
uses the corresponding numeric values in
weights to determine how probable it is
for each item in items to get picked (in
the long run, items with higher weights
will get picked more often than ones with
lower weight). Each item gets picked at
most once.

RandomSample[weights -> items]
randomly picks one items from items us-
ing weights weights. Each item gets
picked at most once.

RandomSample[weights -> items, {n1, n2,
...}]

randomly picks a structured list of items
from items using weights weights. Each
item gets picked at most once.

>> SeedRandom[42]

>> RandomSample[{a, b, c}]

{a}

>> SeedRandom[42]

>> RandomSample[{a, b, c, d, e, f,
g, h}, 7]

{b, f , a, h, c, e, d}

>> SeedRandom[42]

>> RandomSample[{"a", {1, 2}, x,
{}}, 3]

{{1, 2} , {} , a}

>> SeedRandom[42]

>> RandomSample[Range[100], {2, 3}]

{{84, 54, 71} , {46, 45, 40}}

>> SeedRandom[42]

>> RandomSample[Range[100] -> Range
[100], 5]

{62, 98, 86, 78, 40}

$RandomState

$RandomState
is a long number representing the inter-
nal state of the pseudorandom number
generator.

>> Mod[$RandomState, 10^100]
4 655 454 733 528 649 727 215 205 ˜

˜217 452 230 466 834 005 504 017 ˜
˜054 442 808 272 607 407 752 631 ˜
˜449 491 946 049 683 375 216 956 462

>> IntegerLength[$RandomState]
6 440

So far, it is not possible to assign values to
$RandomState.
>> $RandomState = 42

Itisnotpossibletochangetherandomstate.

42

Not even to its own value:
>> $RandomState = $RandomState;

Itisnotpossibletochangetherandomstate.

SeedRandom

SeedRandom[n]
resets the pseudorandom generator with
seed n.

SeedRandom[]
uses the current date and time as the
seed.

250

SeedRandom can be used to get reproducible ran-
dom numbers:
>> SeedRandom[42]

>> RandomInteger[100]

>> RandomInteger[100]

>> SeedRandom[42]

>> RandomInteger[100]

>> RandomInteger[100]

String seeds are supported as well:
>> SeedRandom["Mathics"]

>> RandomInteger[100]

Calling SeedRandom without arguments will
seed the random number generator to a random
state:
>> SeedRandom[]

>> RandomInteger[100]

251

31. Special Functions

There are a number of functions found in math-
ematical physics and found in standard hand-
books.
One thing to note is that the technical liter-
ature often contains several conflicting defini-
tions. So beware and check for conformance
with the Mathics documentation.
A number of special functions can be evaluated

for arbitrary complex values of their arguments.
However defining relations may apply only for
some special choices of arguments. Here, the
full function corresponds to an extension or “an-
alytic continuation” of the defining relation.
For example, integral representations of func-
tions are only valid when the integral exists, but
the functions can usually be defined b by ana-
lytic continuation.

Contents

Bessel and Related
Functions 252
AiryAi 253
AiryAiPrime . . . 253
AiryAiZero 253
AiryBi 253
AiryBiPrime . . . 253
AiryBiZero 253
AngerJ 254
BesselI 254
BesselJ 254
BesselJZero 254
BesselK 254
BesselY 255
BesselYZero . . . 255
HankelH1 255
HankelH2 255
KelvinBei 255
KelvinBer 255
KelvinKei 256

KelvinKer 256
StruveH 256
StruveL 256
WeberE 257

Error Function and
Related Functions 257
Erf 257
Erfc 257
FresnelC 257
FresnelS 258
InverseErf 258
InverseErfc 258

Exponential Integral
and Special
Functions 258
ExpIntegralE . . . 258
ExpIntegralEi . . . 258
ProductLog 258

Gamma and Related
Functions 258
Gamma 259

Pochhammer . . . 259
Orthogonal Polynomials 259

ChebyshevT . . . 259
ChebyshevU . . . 259
GegenbauerC . . . 260
HermiteH 260
JacobiP 260
LaguerreL 260
LegendreP 260
LegendreQ 261
SphericalHarmon-

icY 261
Exponential Integral

and Special
Functions 261
LerchPhi 261
Zeta 261

Bessel and Related Functions
Bessel and Related Function

AiryAi

AiryAi[x]
returns the Airy function Ai(x).

Exact values:
>> AiryAi[0]

3
1
3

3Gamma
[2

3
]

AiryAi can be evaluated numerically:
>> AiryAi[0.5]

0.231694

252

>> AiryAi[0.5 + I]
0.157118 − 0.24104I

>> Plot[AiryAi[x], {x, -10, 10}]

−10 −5 5 10

−0.4

−0.2

0.2

0.4

AiryAiPrime

AiryAiPrime[x]
returns the derivative of the Airy func-
tion AiryAi[x].

Exact values:
>> AiryAiPrime[0]

− 3
2
3

3Gamma
[

1
3

]
Numeric evaluation:
>> AiryAiPrime[0.5]

−0.224911

AiryAiZero

AiryAiZero[k]
returns the kth zero of the Airy function
Ai(z).

>> N[AiryAiZero[1]]
−2.33811

AiryBi

AiryBi[x]
returns the Airy function of the second
kind Bi(x).

Exact values:

>> AiryBi[0]

3
5
6

3Gamma
[2

3
]

Numeric evaluation:
>> AiryBi[0.5]

0.854277

>> AiryBi[0.5 + I]
0.688145 + 0.370815I

>> Plot[AiryBi[x], {x, -10, 2}]

−10 −8 −6 −4 −2 2
−0.5

0.5

1.0

1.5

AiryBiPrime

AiryBiPrime[x]
returns the derivative of the Airy func-
tion of the second kind AiryBi[x].

Exact values:
>> AiryBiPrime[0]

3
1
6

Gamma
[

1
3

]
Numeric evaluation:
>> AiryBiPrime[0.5]

0.544573

AiryBiZero

AiryBiZero[k]
returns the kth zero of the Airy function
Bi(z).

>> N[AiryBiZero[1]]
−1.17371

253

AngerJ

AngerJ[n, z]
returns the Anger function J_n(z).

>> AngerJ[1.5, 3.5]
0.294479

>> Plot[AngerJ[1, x], {x, -10, 10}]

−10 −5 5 10

−0.6

−0.4

−0.2

0.2

0.4

0.6

BesselI

BesselI[n, z]
returns the modified Bessel function of
the first kind I_n(z).

>> BesselI[1.5, 4]
8.17263

>> Plot[BesselI[0, x], {x, 0, 5}]

1 2 3 4 5

5

10

15

20

BesselJ

BesselJ[n, z]
returns the Bessel function of the first
kind J_n(z).

>> BesselJ[0, 5.2]
−0.11029

>> D[BesselJ[n, z], z]

−BesselJ [1 + n, z]
2

+
BesselJ [− 1 + n, z]

2

>> Plot[BesselJ[0, x], {x, 0, 10}]

2 4 6 8 10

−0.4
−0.2

0.2
0.4
0.6
0.8

BesselJZero

BesselJZero[n, k]
returns the kth zero of the Bessel function
of the first kind J_n(z).

>> N[BesselJZero[0, 1]]
2.40483

BesselK

BesselK[n, z]
returns the modified Bessel function of
the second kind K_n(z).

>> BesselK[1.5, 4]
0.014347

>> Plot[BesselK[0, x], {x, 0, 5}]

1 2 3 4 5

0.2
0.4
0.6
0.8
1.0
1.2

BesselY

BesselY[n, z]
returns the Bessel function of the second
kind Y_n(z).

254

>> BesselY[1.5, 4]
0.367112

>> Plot[BesselY[0, x], {x, 0, 10}]

2 4 6 8 10

−0.4

−0.2

0.2

0.4

BesselYZero

BesselYZero[n, k]
returns the kth zero of the Bessel function
of the second kind Y_n(z).

>> N[BesselYZero[0, 1]]
0.893577

HankelH1

HankelH1[n, z]
returns the Hankel function of the first
kind H_n∧1 (z).

>> HankelH1[1.5, 4]
0.185286 + 0.367112I

HankelH2

HankelH2[n, z]
returns the Hankel function of the second
kind H_n∧2 (z).

>> HankelH2[1.5, 4]
0.185286 − 0.367112I

KelvinBei

KelvinBei[z]
returns the Kelvin function bei(z).

KelvinBei[n, z]
returns the Kelvin function bei_n(z).

>> KelvinBei[0.5]
0.0624932

>> KelvinBei[1.5 + I]
0.326323 + 0.755606I

>> KelvinBei[0.5, 0.25]
0.370153

>> Plot[KelvinBei[x], {x, 0, 10}]

2 4 6 8 10

−30

−20

−10

10

KelvinBer

KelvinBer[z]
returns the Kelvin function ber(z).

KelvinBer[n, z]
returns the Kelvin function ber_n(z).

>> KelvinBer[0.5]
0.999023

>> KelvinBer[1.5 + I]
1.1162 − 0.117944I

>> KelvinBer[0.5, 0.25]
0.148824

>> Plot[KelvinBer[x], {x, 0, 10}]

2 4 6 8 10

20

40

60

80

255

KelvinKei

KelvinKei[z]
returns the Kelvin function kei(z).

KelvinKei[n, z]
returns the Kelvin function kei_n(z).

>> KelvinKei[0.5]
−0.671582

>> KelvinKei[1.5 + I]
−0.248994 + 0.303326I

>> KelvinKei[0.5, 0.25]
−2.0517

>> Plot[KelvinKei[x], {x, 0, 10}]

2 4 6 8 10

−0.5

−0.4

−0.3

−0.2

−0.1

KelvinKer

KelvinKer[z]
returns the Kelvin function ker(z).

KelvinKer[n, z]
returns the Kelvin function ker_n(z).

>> KelvinKer[0.5]
0.855906

>> KelvinKer[1.5 + I]
−0.167162 − 0.184404I

>> KelvinKer[0.5, 0.25]
0.450023

>> Plot[KelvinKer[x], {x, 0, 10}]

2 4 6 8 10−0.1

0.1
0.2
0.3
0.4
0.5

StruveH

StruveH[n, z]
returns the Struve function H_n(z).

>> StruveH[1.5, 3.5]
1.13192

>> Plot[StruveH[0, x], {x, 0, 20}]

5 10 15 20
−0.2

0.2

0.4

0.6

StruveL

StruveL[n, z]
returns the modified Struve function
L_n(z).

>> StruveL[1.5, 3.5]
4.41126

>> Plot[StruveL[0, x], {x, 0, 5}]

1 2 3 4 5

5

10

15

20

WeberE

WeberE[n, z]
returns the Weber function E_n(z).

>> WeberE[1.5, 3.5]
−0.397256

256

>> Plot[WeberE[1, x], {x, -10, 10}]

−10 −5 5 10

−0.4

−0.2

0.2

0.4

0.6

Error Function and Related
Functions
Error Function and Related Function

Erf

Erf[z]
returns the error function of z.

Erf[z0, z1]
returns the result of Erf[z1] - Erf[z0].

Erf[x] is an odd function:
>> Erf[-x]

−Erf [x]

>> Erf[1.0]
0.842701

>> Erf[0]
0

>> {Erf[0, x], Erf[x, 0]}
{Erf [x] , − Erf [x]}

>> Plot[Erf[x], {x, -2, 2}]

−2 −1 1 2

−1.0

−0.5

0.5

1.0

Erfc

Erfc[z]
returns the complementary error func-
tion of z.

>> Erfc[-x] / 2
2 − Erfc [x]

2

>> Erfc[1.0]
0.157299

>> Erfc[0]
1

>> Plot[Erfc[x], {x, -2, 2}]

−2 −1 1 2

0.5

1.0

1.5

2.0

FresnelC

FresnelC[z]
is the Fresnel C integral C(z).

>> FresnelC[{0, Infinity}]{
0,

1
2

}
>> Integrate[Cos[x^2 Pi/2], {x, 0,

z}]

FresnelC [z]

FresnelS

FresnelS[z]
is the Fresnel S integral S(z).

>> FresnelS[{0, Infinity}]{
0,

1
2

}

257

>> Integrate[Sin[x^2 Pi/2], {x, 0,
z}]

FresnelS [z]

InverseErf

InverseErf[z]
returns the inverse error function of z.

>> InverseErf /@ {-1, 0, 1}
{−∞, 0, ∞}

>> Plot[InverseErf[x], {x, -1, 1}]

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

InverseErf[z] only returns numeric values for
-1 <= z <= 1:
>> InverseErf /@ {0.9, 1.0, 1.1}

{1.16309, ∞, InverseErf [1.1]}

InverseErfc

InverseErfc[z]
returns the inverse complementary error
function of z.

>> InverseErfc /@ {0, 1, 2}
{∞, 0, − ∞}

Exponential Integral and
Special Functions
Exponential Integral and Special Function

ExpIntegralE

ExpIntegralE[n, z]
returns the exponential integral function
$E_n(z)$.

>> ExpIntegralE[2.0, 2.0]
0.0375343

ExpIntegralEi

ExpIntegralEi[z]
returns the exponential integral function
$Ei(z)$.

>> ExpIntegralEi[2.0]
4.95423

ProductLog

ProductLog[z]
returns the value of the Lambert W func-
tion at z.

The defining equation:
>> z == ProductLog[z] * E ^

ProductLog[z]

True

Some special values:
>> ProductLog[0]

0

>> ProductLog[E]
1

The graph of ProductLog:
>> Plot[ProductLog[x], {x, -1/E, E

}]

0.5 1.0 1.5 2.0 2.5−0.2

0.2

0.4

0.6

0.8

1.0

Gamma and Related Functions
Gamma and Related Function

258

Gamma
In number theory the logarithm of the gamma
function often appears. For positive real num-
bers, this can be evaluated as Log[Gamma[z]].

Gamma[z]
is the gamma function on the complex
number z.

Gamma[z, x]
is the upper incomplete gamma function.

Gamma[z, x0, x1]
is equivalent to Gamma[z, x0] - Gamma[
z, x1].

Gamma[z] is equivalent to (z - 1)!:
>> Simplify[Gamma[z] - (z - 1)!]

0

Exact arguments:
>> Gamma[8]

5 040

>> Gamma[1/2]
√

Pi

>> Gamma[1, x]

E−x

>> Gamma[0, x]
ExpIntegralE [1, x]

Numeric arguments:
>> Gamma[123.78]

4.21078 × 10204

>> Gamma[1. + I]
0.498016 − 0.15495I

Both Gamma and Factorial functions are contin-
uous:
>> Plot[{Gamma[x], x!}, {x, 0, 4}]

1 2 3 4

4

6

8

10

12

Pochhammer
The Pochhammer symbol or rising factorial of-
ten appears in series expansions for hypergeo-
metric functions. The Pochammer symbol has a
definie value even when the gamma functions
which appear in its definition are infinite.

Pochhammer[a, n]
is the Pochhammer symbol (a)_n.

>> Pochhammer[4, 8]
6 652 800

Orthogonal Polynomials
Orthogonal Polynomial

ChebyshevT

ChebyshevT[n, x]
returns the Chebyshev polynomial of the
first kind T_n(x).

>> ChebyshevT[8, x]

1 − 32x2 + 160x4 − 256x6 + 128x8

>> ChebyshevT[1 - I, 0.5]
0.800143 + 1.08198I

ChebyshevU

ChebyshevU[n, x]
returns the Chebyshev polynomial of the
second kind U_n(x).

>> ChebyshevU[8, x]

1 − 40x2 + 240x4 − 448x6 + 256x8

>> ChebyshevU[1 - I, 0.5]
1.60029 + 0.721322I

GegenbauerC

GegenbauerC[n, m, x]
returns the Gegenbauer polynomial
C_n∧(m)(x).

259

>> GegenbauerC[6, 1, x]

−1 + 24x2 − 80x4 + 64x6

>> GegenbauerC[4 - I, 1 + 2 I, 0.7]
−3.2621 − 24.9739I

HermiteH

HermiteH[n, x]
returns the Hermite polynomial H_n(x).

>> HermiteH[8, x]

1 680 − 13 440x2 + 13 ˜
˜440x4 − 3 584x6 + 256x8

>> HermiteH[3, 1 + I]
−28 + 4I

>> HermiteH[4.2, 2]
77.5291

JacobiP

JacobiP[n, a, b, x]
returns the Jacobi polynomial
P_n∧(a,b)(x).

>> JacobiP[1, a, b, z]
a
2
− b

2
+ z

(
1 +

a
2

+
b
2

)
>> JacobiP[3.5 + I, 3, 2, 4 - I]

1 410.02 + 5 797.3I

LaguerreL

LaguerreL[n, x]
returns the Laguerre polynomial L_n(x).

LaguerreL[n, a, x]
returns the generalised Laguerre polyno-
mial L∧a_n(x).

>> LaguerreL[8, x]

1 − 8x + 14x2 − 28x3

3
+

35x4

12

− 7x5

15
+

7x6

180
− x7

630
+

x8

40 320

>> LaguerreL[3/2, 1.7]
−0.947134

>> LaguerreL[5, 2, x]

21 − 35x +
35x2

2
− 7x3

2
+

7x4

24
− x5

120

LegendreP

LegendreP[n, x]
returns the Legendre polynomial P_n(x).

LegendreP[n, m, x]
returns the associated Legendre polyno-
mial P∧m_n(x).

>> LegendreP[4, x]

3
8
− 15x2

4
+

35x4

8

>> LegendreP[5/2, 1.5]
4.17762

>> LegendreP[1.75, 1.4, 0.53]
−1.32619

>> LegendreP[1.6, 3.1, 1.5]
−0.303998 − 1.91937I

LegendreP can be used to draw generalized Lis-
sajous figures:
>> ParametricPlot[{LegendreP[7, x

], LegendreP[5, x]}, {x, -1, 1}]

−0.4 −0.2 0.2 0.4

−0.6

−0.4

−0.2

0.2

0.4

0.6

260

LegendreQ

LegendreQ[n, x]
returns the Legendre function of the sec-
ond kind Q_n(x).

LegendreQ[n, m, x]
returns the associated Legendre function
of the second Q∧m_n(x).

>> LegendreQ[5/2, 1.5]
0.036211 − 6.56219I

>> LegendreQ[1.75, 1.4, 0.53]
2.05499

>> LegendreQ[1.6, 3.1, 1.5]
−1.71931 − 7.70273I

SphericalHarmonicY

SphericalHarmonicY[l, m, theta, phi]
returns the spherical harmonic function
Y_l∧m(theta, phi).

>> SphericalHarmonicY[3/4, 0.5, Pi
/5, Pi/3]

0.254247 + 0.14679I

>> SphericalHarmonicY[3, 1, theta,
phi]
√

21
(

1 − 5Cos [theta]2
)

EIphiSin [theta]

8
√

Pi

Exponential Integral and
Special Functions
Exponential Integral and Special Function

LerchPhi

LerchPhi[z,s,a]
gives the Lerch transcendent (z,s,a).

>> LerchPhi[2, 3, -1.5]
19.3893 − 2.1346I

>> LerchPhi[1, 2, 1/4]
17.1973

Zeta

Zeta[z]
returns the Riemann zeta function of z.

>> Zeta[2]

Pi2

6

>> Zeta[-2.5 + I]
0.0235936 + 0.0014078I

261

32. Strings and Characters

Contents

Characters in Strings . 262
CharacterRange . 262
Characters 262
DigitQ 262
LetterQ 263
LowerCaseQ . . . 263
ToLowerCase . . . 263
ToUpperCase . . . 263
UpperCaseQ . . . 263

Character Codes 263
FromCharacterCode 263
ToCharacterCode . 264

Operations on Strings . 264
StringDrop 264

StringInsert 265
StringJoin (<>) . . 265
StringLength . . . 265
StringPosition . . 265
StringReplace . . . 266
StringReverse . . . 266
StringRiffle 266
StringSplit 267
StringTake 267
StringTrim 267

String Patterns 267
DigitCharacter . . 267
EndOfLine 268
EndOfString . . . 268

LetterCharacter . . 268
StartOfLine 268
StartOfString . . . 268
StringCases 269
StringExpression

(~~) 269
StringFreeQ 270
StringMatchQ . . 270
WhitespaceChar-

acter 270
WordBoundary . . 270
WordCharacter . . 270

Regular Expressions . . 270
RegularExpression 270

Characters in Strings
Characters in String

CharacterRange

CharacterRange["a‘‘,”b"]
returns a list of the Unicode characters
from a to b inclusive.

>> CharacterRange["a", "e"]

{a, b, c, d, e}

>> CharacterRange["b", "a"]

{}

Characters

Characters["string"]
returns a list of the characters in string.

>> Characters["abc"]
{a, b, c}

DigitQ

DigitQ[string] yields True if all the characters
in the string are digits, and yields False oth-
erwise.

>> DigitQ["9"]
True

>> DigitQ["a"]

False

>> DigitQ
["01001101011000010111010001101000011010010110001101110011"]

True

>> DigitQ["-123456789"]

False

LetterQ

LetterQ[string] yields True if all the charac-
ters in the string are letters, and yields False
otherwise.

262

>> LetterQ["m"]
True

>> LetterQ["9"]
False

>> LetterQ["Mathics"]
True

>> LetterQ["Welcome to Mathics"]
False

LowerCaseQ

LowerCaseQ[s]
returns True if s consists wholly of lower
case characters.

>> LowerCaseQ["abc"]
True

An empty string returns True.
>> LowerCaseQ[""]

True

ToLowerCase

ToLowerCase[s]
returns s in all lower case.

>> ToLowerCase["New York"]
new york

ToUpperCase

ToUpperCase[s]
returns s in all upper case.

>> ToUpperCase["New York"]
NEW YORK

UpperCaseQ

UpperCaseQ[s]
returns True if s consists wholly of upper
case characters.

>> UpperCaseQ["ABC"]
True

An empty string returns True.
>> UpperCaseQ[""]

True

Character Codes
Character Code

FromCharacterCode

FromCharacterCode[n]
returns the character corresponding to
Unicode codepoint n.

FromCharacterCode[{n1, n2, ...}]
returns a string with characters corre-
sponding to n_i.

FromCharacterCode[{{n11, n12, ...}, {
n21, n22, ...}, ...}]

returns a list of strings.

>> FromCharacterCode[100]
d

>> FromCharacterCode[228, "ISO8859
-1"]

ä

>> FromCharacterCode[{100, 101,
102}]

def

>> ToCharacterCode[%]
{100, 101, 102}

>> FromCharacterCode[{{97, 98, 99},
{100, 101, 102}}]

{abc, def}

>> ToCharacterCode["abc 123"] //
FromCharacterCode

abc 123

263

ToCharacterCode

ToCharacterCode["string"]
converts the string to a list of character
codes (Unicode codepoints).

ToCharacterCode[{"string1‘‘,”string2",
...}]

converts a list of strings to character
codes.

>> ToCharacterCode["abc"]
{97, 98, 99}

>> FromCharacterCode[%]
abc

>> ToCharacterCode["\[Alpha]\[Beta
]\[Gamma]"]

{945, 946, 947}

>> ToCharacterCode["ä", "UTF8"]
{195, 164}

>> ToCharacterCode["ä", "ISO8859
-1"]

{228}

>> ToCharacterCode[{"ab", "c"}]
{{97, 98} , {99}}

>> ToCharacterCode[{"ab", x}]
Stringorlisto f stringsexpectedatposition1inToCharacterCode[{ab,
x}].

ToCharacterCode
[
{ab, x}

]
>> ListPlot[ToCharacterCode["plot

this string"], Filling -> Axis]

5 10 15

106
108
110
112
114
116

Operations on Strings
Operations on String

StringDrop

StringDrop["string", n]
gives string with the first n characters
dropped.

StringDrop["string", -n]
gives string with the last n characters
dropped.

StringDrop["string", {n}]
gives string with the nth character
dropped.

StringDrop["string", {m, n}]
gives string with the characters m through
n dropped.

>> StringDrop["abcde", 2]

cde

>> StringDrop["abcde", -2]

abc

>> StringDrop["abcde", {2}]

acde

>> StringDrop["abcde", {2,3}]

ade

>> StringDrop["abcd",{3,2}]

abcd

>> StringDrop["abcd",0]

abcd

StringInsert

StringInsert["string‘‘,”snew", n]
yields a string with snew inserted starting
at position n in string.

StringInsert["string‘‘,”snew", -n]
inserts a at position n from the end of
"string".

StringInsert["string‘‘,”snew", {n_1,
n_2, ...}]

inserts a copy of snew at each position n_i
in string; the n_i are taken before any in-
sertion is done.

StringInsert[{s_1, s_2, ...}, "snew",
n]

gives the list of resutls for each of the s_i.

>> StringInsert["noting", "h", 4]

nothing

264

>> StringInsert["note", "d", -1]

noted

>> StringInsert["here", "t", -5]

there

>> StringInsert["adac", "he", {1,
5}]

headache

>> StringInsert[{"something", "
sometimes"}, " ", 5]

{some thing, some times}

>> StringInsert["1234567890123456",
".", Range[-16, -4, 3]]

1.234.567.890.123.456

StringJoin (<>)

StringJoin["s1‘‘,”s2", ...]
returns the concatenation of the strings
s1, s2, .

>> StringJoin["a", "b", "c"]

abc

>> "a" <> "b" <> "c" // InputForm

"abc"

StringJoin flattens lists out:
>> StringJoin[{"a", "b"}] //

InputForm

"ab"

>> Print[StringJoin[{"Hello", " ",
{"world"}}, "!"]]

Helloworld!

StringLength

StringLength["string"]
gives the length of string.

>> StringLength["abc"]
3

StringLength is listable:
>> StringLength[{"a", "bc"}]

{1, 2}

>> StringLength[x]

Stringexpected.

StringLength [x]

StringPosition

StringPosition["string", patt]
gives a list of starting and ending posi-
tions where patt matches "string".

StringPosition["string", patt, n]
returns the first n matches only.

StringPosition["string", {patt1, patt2,
...}, n]

matches multiple patterns.
StringPosition[{s1, s2, ...}, patt]

returns a list of matches for multiple
strings.

>> StringPosition["123
ABCxyABCzzzABCABC", "ABC"]

{{4, 6} , {9, 11} , {15, 17} , {18, 20}}

>> StringPosition["123
ABCxyABCzzzABCABC", "ABC", 2]

{{4, 6} , {9, 11}}

StringPosition can be useful for searching
through text.
>> data = Import["ExampleData/

EinsteinSzilLetter.txt"];

>> StringPosition[data, "uranium"]

{{299, 305} , {870, 876} , {1 538, 1 ˜
˜544} , {1 671, 1 677} , {2 300, 2 306
} , {2 784, 2 790} , {3 093, 3 099}}

265

StringReplace

StringReplace["string‘‘,”a"->"b"]
replaces each occurrence of old with new
in string.

StringReplace["string", {"s1"->"sp1‘‘,
”s2"->"sp2"}]

performs multiple replacements of each
si by the corresponding spi in string.

StringReplace["string", srules, n]
only performs the first n replacements.

StringReplace[{"string1‘‘,”string2",
...}, srules]

performs the replacements specified by
srules on a list of strings.

StringReplace replaces all occurrences of one
substring with another:
>> StringReplace["xyxyxyyyxxxyyxy",

"xy" -> "A"]

AAAyyxxAyA

Multiple replacements can be supplied:
>> StringReplace["xyzwxyzwxxyzxyzw

", {"xyz" -> "A", "w" -> "BCD"}]

ABCDABCDxAABCD

Only replace the first 2 occurences:
>> StringReplace["xyxyxyyyxxxyyxy",

"xy" -> "A", 2]

AAxyyyxxxyyxy

Also works for multiple rules:
>> StringReplace["abba", {"a" -> "A

", "b" -> "B"}, 2]

ABba

StringReplace acts on lists of strings too:
>> StringReplace[{"xyxyxxy", "

yxyxyxxxyyxy"}, "xy" -> "A"]

{AAxA, yAAxxAyA}

StringReplace also can be used as an operator:
>> StringReplace["y" -> "ies"]["

city"]

cities

StringReverse

StringReverse["string"]
reverses the order of the characters in
“string”.

>> StringReverse["live"]

evil

StringRiffle

StringRiffle[{s1, s2, s3, ...}]
returns a new string by concatenating
all the si, with spaces inserted between
them.

StringRiffle[list, sep]
inserts the separator sep between all ele-
ments in list.

StringRiffle[list, {‘‘left’, “sep”,
“right”}]’

use left and right as delimiters after con-
catenation.

>> StringRiffle[{"a", "b", "c", "d
", "e"}]

a b c d e

>> StringRiffle[{"a", "b", "c", "d
", "e"}, ", "]

a, b, c, d, e

>> StringRiffle[{"a", "b", "c", "d
", "e"}, {"(", " ", ")"}]

(a b c d e)

StringSplit

StringSplit["s"]
splits the string s at whitespace, discard-
ing the whitespace and returning a list of
strings.

StringSplit["s‘‘,”d"]
splits s at the delimiter d.

StringSplit[s, {"d1‘‘,”d2", ...}]
splits s using multiple delimiters.

StringSplit[{s_1, $s_2, ...}, {"d1‘‘,
”d2", ...}]

returns a list with the result of applying
the function to each element.

266

>> StringSplit["abc,123", ","]

{abc, 123}

>> StringSplit["abc 123"]

{abc, 123}

>> StringSplit["abc,123.456", {",",
"."}]

{abc, 123, 456}

>> StringSplit["a b c",
RegularExpression[" +"]]

{a, b, c}

>> StringSplit[{"a b", "c d"},
RegularExpression[" +"]]

{{a, b} , {c, d}}

StringTake

StringTake["string", n]
gives the first n characters in string.

StringTake["string", -n]
gives the last n characters in string.

StringTake["string", {n}]
gives the nth character in string.

StringTake["string", {m, n}]
gives characters m through n in string.

StringTake["string", {m, n, s}]
gives characters m through n in steps of s.

StringTake[{s1, s2, ...} spec}]
gives the list of results for each of the si.

>> StringTake["abcde", 2]

ab

>> StringTake["abcde", 0]

>> StringTake["abcde", -2]

de

>> StringTake["abcde", {2}]

b

>> StringTake["abcd", {2,3}]

bc

>> StringTake["abcdefgh", {1, 5,
2}]
ace

Take the last 2 characters from several strings:

>> StringTake[{"abcdef", "stuv", "
xyzw"}, -2]

{ef, uv, zw}

StringTake also supports standard sequence
specifications
>> StringTake["abcdef", All]

abcdef

StringTrim

StringTrim[s]
returns a version of s with whitespace re-
moved from start and end.

>> StringJoin["a", StringTrim[" \tb
\n "], "c"]

abc

>> StringTrim["ababaxababyaabab",
RegularExpression["(ab)+"]]

axababya

String Patterns
String Pattern

DigitCharacter

DigitCharacter
represents the digits 0-9.

>> StringMatchQ["1", DigitCharacter
]

True

>> StringMatchQ["a", DigitCharacter
]

False

>> StringMatchQ["12",
DigitCharacter]

False

>> StringMatchQ["123245",
DigitCharacter..]

True

267

EndOfLine

EndOfString
represents the end of a line in a string.

>> StringReplace["aba\nbba\na\nab",
"a" ~~EndOfLine -> "c"]

abc
bbc
c
ab

>> StringSplit["abc\ndef\nhij",
EndOfLine]

{abc,
def,
hij}

EndOfString

EndOfString
represents the end of a string.

Test whether strings end with “e”:
>> StringMatchQ[#, __ ~~"e" ~~

EndOfString] &/@ {"apple", "
banana", "artichoke"}

{True, False, True}

>> StringReplace["aab\nabb", "b" ~~
EndOfString -> "c"]

aab
abc

LetterCharacter

LetterCharacter
represents letters.

>> StringMatchQ[#, LetterCharacter]
& /@ {"a", "1", "A", " ", "."}

{True, False, True, False, False}

LetterCharacter also matches unicode charac-
ters.
>> StringMatchQ["\[Lambda]",

LetterCharacter]

True

StartOfLine

StartOfString
represents the start of a line in a string.

>> StringReplace["aba\nbba\na\nab",
StartOfLine ~~"a" -> "c"]

cba
bba
c
cb

>> StringSplit["abc\ndef\nhij",
StartOfLine]

{abc
, def
, hij}

StartOfString

StartOfString
represents the start of a string.

Test whether strings start with “a”:
>> StringMatchQ[#, StartOfString ~~

"a" ~~__] &/@ {"apple", "banana
", "artichoke"}

{True, False, True}

>> StringReplace["aba\nabb",
StartOfString ~~"a" -> "c"]

cba
abb

268

StringCases

StringCases["string", pattern]
gives all occurences of pattern in string.

StringReplace["string", pattern -> form]
gives all instances of form that stem from
occurences of pattern in string.

StringCases["string", {pattern1, pattern2,
...}]

gives all occurences of pattern1, pattern2,
....

StringReplace["string", pattern, n]
gives only the first n occurences.

StringReplace[{"string1‘‘,”string2",
...}, pattern]

gives occurences in string1, string2, ...

>> StringCases["axbaxxb", "a" ~~x_
~~"b"]

{axb}

>> StringCases["axbaxxb", "a" ~~x__
~~"b"]

{axbaxxb}

>> StringCases["axbaxxb", Shortest
["a" ~~x__ ~~"b"]]

{axb, axxb}

>> StringCases["-abc- def -uvw- xyz
", Shortest["-" ~~x__ ~~"-"] ->
x]

{abc, uvw}

>> StringCases["-öhi- -abc- -.-",
"-" ~~x : WordCharacter .. ~~"-"
-> x]

{öhi, abc}

>> StringCases["abc-abc xyz-uvw",
Shortest[x : WordCharacter .. ~~
"-" ~~x_] -> x]

{abc}

>> StringCases["abba", {"a" -> 10,
"b" -> 20}, 2]

{10, 20}

>> StringCases["a#ä_123",
WordCharacter]

{a, ä, 1, 2, 3}

>> StringCases["a#ä_123",
LetterCharacter]

{a, ä}

StringExpression (~~)

StringExpression[s_1, s_2, ...]
represents a sequence of strings and sym-
bolic string objects s_i.

>> "a" ~~ "b" // FullForm
"ab"

StringFreeQ

StringFreeQ["string", patt]
returns True if no substring in string
matches the string expression patt, and
returns False otherwise.

StringFreeQ[{‘‘s1’, “s2”, ...}, patt]’
returns the list of results for each element
of string list.

StringFreeQ[‘‘string’, {p1, p2, ...}]’
returns True if no substring matches any
of the pi.

StringFreeQ[patt]
represents an operator form of
StringFreeQ that can be applied to
an expression.

>> StringFreeQ["mathics", "m" ~~__
~~"s"]

False

>> StringFreeQ["mathics", "a" ~~__
~~"m"]

True

>> StringFreeQ["Mathics", "MA" ,
IgnoreCase -> True]

False

>> StringFreeQ[{"g", "a", "laxy", "
universe", "sun"}, "u"]

{True, True, True, False, False}

269

>> StringFreeQ["e" ~~___ ~~"u"] /@
{"The Sun", "Mercury", "Venus",
"Earth", "Mars", "Jupiter", "
Saturn", "Uranus", "Neptune"}

{False, False, False, True,
True, True, True, True, False}

>> StringFreeQ[{"A", "Galaxy", "Far
", "Far", "Away"}, {"F" ~~__ ~~"
r", "aw" ~~___}, IgnoreCase ->
True]

{True, True, False, False, False}

StringMatchQ
>> StringMatchQ["abc", "abc"]

True

>> StringMatchQ["abc", "abd"]

False

>> StringMatchQ["15a94xcZ6", (
DigitCharacter | LetterCharacter
)..]

True

Use StringMatchQ as an operator
>> StringMatchQ[LetterCharacter]["a

"]

True

WhitespaceCharacter

WhitespaceCharacter
represents a single whitespace character.

>> StringMatchQ["\n",
WhitespaceCharacter]

True

>> StringSplit["a\nb\r\nc\rd",
WhitespaceCharacter]

{a, b, c, d}

For sequences of whitespace characters use
Whitespace:
>> StringMatchQ[" \n",

WhitespaceCharacter]

False

>> StringMatchQ[" \n", Whitespace]
True

WordBoundary

WordBoundary
represents the boundary between words.

>> StringReplace["apple banana
orange artichoke", "e" ~~
WordBoundary -> "E"]

applE banana orangE artichokE

WordCharacter

WordCharacter
represents a single letter or digit charac-
ter.

>> StringMatchQ[#, WordCharacter]
&/@ {"1", "a", "A", ",", " "}

{True, True, True, False, False}

Test whether a string is alphanumeric:
>> StringMatchQ["abc123DEF",

WordCharacter..]

True

>> StringMatchQ["$b;123",
WordCharacter..]

False

Regular Expressions
Regular Expression

RegularExpression

RegularExpression[‘‘regex’]’
represents the regex specified by the
string $“regex”$.

>> StringSplit["1.23, 4.56 7.89",
RegularExpression["(\\s|,)+"]]

{1.23, 4.56, 7.89}

270

33. File Formats
Built-in Importers.

Contents

HTML 271
DataImport 271
HTMLGetString . 271
HyperlinksImport 271
ImageLinksImport 271

PlaintextImport . . 271
SourceImport . . . 271
TitleImport 271
XMLObjectImport 271

XML 272
PlaintextImport . . 272

TagsImport 272
XMLGetString . . 272
XMLObjectImport 272

HTML
HTML
Basic implementation for a HTML importer

DataImport
>> Import["ExampleData/

PrimeMeridian.html", "Data"][[1,
1, 2, 3]]

{Washington, D.C., 77ř0356.07 W
(1 897) or 77ř0402.24 W (NAD 27)
or 77ř0401.16 W (NAD 83), New
Naval Observatory meridian}

HTMLGetString

HyperlinksImport
>> Import["ExampleData/

PrimeMeridian.html", "Hyperlinks
"][[1]]

/wiki/Prime_meridian_(Greenwich)

ImageLinksImport
>> Import["ExampleData/

PrimeMeridian.html", "ImageLinks
"][[6]]

//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Prime_meridian.jpg/180px-Prime_meridian.jpg

PlaintextImport
>> DeleteDuplicates[StringCases[

Import["ExampleData/
PrimeMeridian.html"],
RegularExpression["Wiki[a-z
]+"]]]

SourceImport
>> DeleteDuplicates[StringCases[

Import["ExampleData/
PrimeMeridian.html", "Source"],
RegularExpression["<t[a-z]+>"]]]

{<title>, <tr>, <th>, <td>}

TitleImport
>> Import["ExampleData/

PrimeMeridian.html", "Title"]

Prime meridian - Wikipedia

XMLObjectImport
>> Part[Import["ExampleData/

PrimeMeridian.html", "XMLObject
"], 2, 3, 1, 3, 2]

XMLElement
[
title, {} , {Prime

meridian - Wikipedia}
]

271

XML
XML

PlaintextImport
>> StringReplace[StringTake[Import

["ExampleData/InventionNo1.xml",
"Plaintext"],31],

FromCharacterCode[10]->"/"]

MuseScore 1.2/2 012-09-12/5.7/40

TagsImport
>> Take[Import["ExampleData/

InventionNo1.xml", "Tags"], 10]

{accidental, alter, arpeggiate,
articulations, attributes, backup,
bar-style, barline, beam, beat-type}

XMLGetString
>> Head[XML‘Parser‘XMLGetString["<a

>"]]

XMLObject [Document]

XMLObjectImport
>> Part[Import["ExampleData/

InventionNo1.xml", "XMLObject"],
2, 3, 1]

XMLElement
[
identification,

{} ,
{

XMLElement
[
encoding,

{} ,
{

XMLElement
[
software,

{} , {MuseScore 1.2}
]

,
XMLElement

[
encoding-date,

{} , {2 012-09-12}
]}]}]

>> Part[Import["ExampleData/
Namespaces.xml"], 2]

XMLElement
[
title, {} , {Prime

meridian - Wikipedia}
]

272

Part III.

License

273

A. GNU General Public License
Version 3, 29 June 2007
Copyright l’ 2007 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it
is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.
The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program—to make sure it remains free software for
all its users. We, the Free Software Foundation, use the GNU General Public License for most of our
software; it applies also to any other work released this way by its authors. You can apply it to your
programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain responsibilities if you distribute copies of the software,
or if you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on
to the recipients the same freedoms that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.
Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the soft-
ware, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.
For the developers and authors protection, the GPL clearly explains that there is no warranty for this
free software. For both users and authors sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.
Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim
of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in
the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore,
we have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program could make it effectively proprietary.
To prevent this, the GPL assures that patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and modification follow.

274

http://fsf.org/

TERMS AND CONDITIONS

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

275

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

276

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User

277

Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

278

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

279

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

280

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

0. Definitions.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

281

The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as

282

your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

283

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the

284

recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates

285

your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

286

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published

287

by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

1. Source Code.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer

288

or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

289

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

290

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

291

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-

292

manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your

293

recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

294

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

2. Basic Permissions.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this

295

criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the

296

work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and

297

only if you received the object code with such an offer, in accord with subsection 6b.
• d) Convey the object code by offering access from a designated place (gratis or for a charge), and

offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-

298

moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do

299

not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a

300

third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO

301

THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.

302

A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;

303

keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the

304

Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this

305

License; or
• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-

terial or in the Appropriate Legal Notices displayed by works containing it; or
• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions

of such material be marked in reasonable ways as different from the original version; or
• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

306

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent

307

license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

308

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

4. Conveying Verbatim Copies.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major

309

Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

310

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.

311

A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

312

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

313

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot

314

convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

315

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

5. Conveying Modified Source Versions.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-

316

cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

317

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial

318

commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that

319

term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

320

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

321

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

322

6. Conveying Non-Source Forms.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

323

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

324

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User

325

Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

326

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

327

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

328

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

7. Additional Terms.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

329

The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as

330

your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

331

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the

332

recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates

333

your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

334

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published

335

by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

8. Termination.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer

336

or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

337

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

338

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

339

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-

340

manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your

341

recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

342

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

9. Acceptance Not Required for Having Copies.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this

343

criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the

344

work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and

345

only if you received the object code with such an offer, in accord with subsection 6b.
• d) Convey the object code by offering access from a designated place (gratis or for a charge), and

offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-

346

moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do

347

not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a

348

third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO

349

THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

10. Automatic Licensing of Downstream Recipients.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.

350

A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;

351

keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the

352

Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this

353

License; or
• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-

terial or in the Appropriate Legal Notices displayed by works containing it; or
• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions

of such material be marked in reasonable ways as different from the original version; or
• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

354

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent

355

license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

356

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

11. Patents.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major

357

Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

358

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.

359

A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

360

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

361

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot

362

convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

363

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

12. No Surrender of Others’ Freedom.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-

364

cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

365

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial

366

commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that

367

term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

368

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

369

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

370

13. Use with the GNU Affero General Public License.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

371

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

372

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User

373

Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

374

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

375

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

376

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

14. Revised Versions of this License.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

377

The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as

378

your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

379

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the

380

recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates

381

your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.

382

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published

383

by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

15. Disclaimer of Warranty.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer

384

or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

385

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

386

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

387

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-

388

manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your

389

recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

390

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

16. Limitation of Liability.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this

391

criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.
A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the

392

work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and

393

only if you received the object code with such an offer, in accord with subsection 6b.
• d) Convey the object code by offering access from a designated place (gratis or for a charge), and

offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-

394

moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-
terial or in the Appropriate Legal Notices displayed by works containing it; or

• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions
of such material be marked in reasonable ways as different from the original version; or

• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do

395

not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a

396

third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO

397

THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

17. Interpretation of Sections 15 and 16.

0. Definitions.
This License refers to version 3 of the GNU General Public License.
Copyright also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.
The Program refers to any copyrightable work licensed under this License. Each licensee is addressed
as you. Licensees and recipients may be individuals or organizations.
To modify a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a modified version of
the earlier work or a work based on the earlier work.
A covered work means either the unmodified Program or a work based on the Program.
To propagate a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a computer
or modifying a private copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.
To convey a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays Appropriate Legal Notices to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The source code for a work means the preferred form of the work for making modifications to it. Object
code means any non-source form of a work.

398

A Standard Interface means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The System Libraries of an executable work include anything, other than the work as a whole, that (a)
is included in the normal form of packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that Major Component, or to implement
a Standard Interface for which an implementation is available to the public in source code form. A
Major Component, in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The Corresponding Source for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System Libraries, or general-purpose
tools or generally available free programs which are used unmodified in performing those activities
but which are not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries and dynami-
cally linked subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.
The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you with facilities for running those
works, provided that you comply with the terms of this License in conveying all material for which
you do not control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit them from making
any copies of your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated below. Sub-
licensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological measure under any applicable law
fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.
When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the works users, your or third parties legal rights to forbid
circumvention of technological measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any medium, pro-
vided that you conspicuously and appropriately publish on each copy an appropriate copyright notice;

399

keep intact all notices stating that this License and any non-permissive terms added in accord with sec-
tion 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a
copy of this License along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from the Program, in
the form of source code under the terms of section 4, provided that you also meet all of these conditions:

• a) The work must carry prominent notices stating that you modified it, and giving a relevant date.
• b) The work must carry prominent notices stating that it is released under this License and any

conditions added under section 7. This requirement modifies the requirement in section 4 to keep
intact all notices.

• c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7 addi-
tional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This
License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

• d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an aggregate if the compilation
and its resulting copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and 5, provided that
you also convey the machine-readable Corresponding Source under the terms of this License, in one of
these ways:

• a) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

• b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source,
or (2) access to copy the Corresponding Source from a network server at no charge.

• c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

• d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with
the object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the

400

Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

• e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source
as a System Library, need not be included in conveying the object code work.
A User Product is either (1) a consumer product, which means any tangible personal property which
is normally used for personal, family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
normally used refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of
use of the product.
Installation Information for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a User Product,
and the conveying occurs as part of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any third party retains
the ability to install modified object code on the User Product (for example, the work has been installed
in ROM).
The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network or
violates the rules and protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public in
source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.
Additional permissions are terms that supplement the terms of this License by making exceptions from
one or more of its conditions. Additional permissions that are applicable to the entire Program shall be
treated as though they were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional permissions
from that copy, or from any part of it. (Additional permissions may be written to require their own re-
moval in certain cases when you modify the work.) You may place additional permissions on material,
added by you to a covered work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

• a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this

401

License; or
• b) Requiring preservation of specified reasonable legal notices or author attributions in that ma-

terial or in the Appropriate Legal Notices displayed by works containing it; or
• c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions

of such material be marked in reasonable ways as different from the original version; or
• d) Limiting the use for publicity purposes of names of licensors or authors of the material; or
• e) Declining to grant rights under trademark law for use of some trade names, trademarks, or

service marks; or
• f) Requiring indemnification of licensors and authors of that material by anyone who conveys the

material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered further restrictions within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it
is governed by this License along with a term that is a further restriction, you may remove that
term. If a license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided under this License. Any
attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have re-
ceived copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing other than this License grants
you permission to propagate or modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.

402

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.
An entity transaction is a transaction transferring control of an organization, or substantially all assets of
one, or subdividing an organization, or merging organizations. If propagation of a covered work results
from an entity transaction, each party to that transaction who receives a copy of the work also receives
whatever licenses to the work the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or affirmed under this
License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim
in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.
A contributor is a copyright holder who authorizes use under this License of the Program or a work on
which the Program is based. The work thus licensed is called the contributor’s contributor version.
A contributor’s essential patent claims are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by
this License, of making, using, or selling its contributor version, but do not include claims that would
be infringed only as a consequence of further modification of the contributor version. For purposes of
this definition, control includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contrib-
utor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a patent license is any express agreement or commitment, however
denominated, not to enforce a patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To grant such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means, then you must either (1) cause
the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of
this License, to extend the patent license to downstream recipients. Knowingly relying means you have
actual knowledge that, but for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.
A patent license is discriminatory if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are a party to an arrangement with a
third party that is in the business of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and under which the third party
grants, to any of the parties who would receive the covered work from you, a discriminatory patent

403

license (a) in connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28
March 2007.
Nothing in this License shall be construed as excluding or limiting any implied license or other defenses
to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.
If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those terms and this License would be to
refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have permission to link or combine any cov-
ered work with a work licensed under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this License will continue to apply
to the part which is the covered work, but the special requirements of the GNU Affero General Public
License, section 13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies that a certain numbered
version of the GNU General Public License or any later version applies to it, you have the option of
following the terms and conditions either of that numbered version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of the GNU General
Public License, you may choose any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.
Later license versions may give you additional or different permissions. However, no additional obli-
gations are imposed on any author or copyright holder as a result of your choosing to follow a later
version.

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM AS IS WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

404

16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption
of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively state the exclusion of warranty; and each file should have at least the copyright
line and a pointer to where the full notice is found.

<one line to give the program ’s name and a brief idea of what it does.>
Copyright (C) <year > <name of author >

This program is free software : you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation , either version 3 of
the License , or (at your option) any later version .

This program is distributed in the hope that it will be useful , but
WITHOUT ANY WARRANTY ; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .

You should have received a copy of the GNU General Public License
along with this program . If not , see <http :// www.gnu.org/
licenses />.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

<program > Copyright (C) <year > <name of author >
This program comes with ABSOLUTELY NO WARRANTY ; for details type ‘

show w’.
This is free software , and you are welcome to redistribute it
under certain conditions ; type ‘show c’ for details .

405

The hypothetical commands ‘show w and ‘show c should show the appropriate parts of the General
Public License. Of course, your program’s commands might be different; for a GUI interface, you would
use an about box.
You should also get your employer (if you work as a programmer) or school, if any, to sign a copyright
disclaimer for the program, if necessary. For more information on this, and how to apply and follow
the GNU GPL, see http://www.gnu.org/licenses/.
The GNU General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Lesser Gen-
eral Public License instead of this License. But first, please read http://www.gnu.org/philosophy/
why-not-lgpl.html.

406

http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/philosophy/why-not-lgpl.html

B. Included software and data

Included data
Mathics includes data from Wikipedia that is published under the Creative Commons Attribution-
Sharealike 3.0 Unported License and the GNU Free Documentation License contributed by the respec-
tive authors that are listed on the websites specified in "data/elements.txt".

MathJax
Copyright l’ 2009-2010 Design Science, Inc.
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations
under the License.

mpmath
Copyright (c) 2005-2018 Fredrik Johansson and mpmath contributors
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:
 Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Prototype
Copyright l’ 2005-2010 Sam Stephenson

407

http://www.apache.org/licenses/LICENSE-2.0

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

pymimemagic
Copyright (c) 2009, Xiaohai Lu All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of the <ORGANIZATION> nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SciPy
Copyright l’ 2001, 2002 Enthought, Inc. All rights reserved.
Copyright l’ 2003-2019 SciPy Developers. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.
Neither the name of Enthought nor the names of the SciPy Developers may be used to endorse or
promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS AS IS AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-

408

CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Three.js
Copyright l’ 2010-2020 Three.js authors.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights copies of the Software, and to permit persons to whom the Software is furnished
to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABIL-
ITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

409

Index

$Aborted, 46
$Assumptions, 60
$BaseDirectory, 182
$ByteOrdering, 46
$CharacterEncoding, 102
$CommandLine, 46
$DateStringFormat, 29
$ExportFormats, 189
$Failed, 46
$HistoryLength, 193
$HomeDirectory, 186
$ImportFormats, 190
$InitialDirectory, 186
$Input, 177
$InputFileName, 177
$InstallationDirectory, 186
$Line, 194
$Machine, 47
$MachineEpsilon, 125
$MachineName, 47
$MachinePrecision, 125
$MaxPrecision, 125
$MinPrecision, 125
$OperatingSystem, 187
$Packages, 47
$ParentProcessID, 48
$Path, 187
$PathnameSeparator, 187
$Post, 193
$Pre, 193
$PrePrint, 193
$PreRead, 193
$ProcessID, 48
$ProcessorType, 48
$RandomState, 250
$RootDirectory, 187
$ScriptCommandLine, 48
$SyntaxHandler, 193
$SystemCharacterEncoding, 104
$SystemID, 48
$SystemMemory, 48
$SystemTimeZone, 30
$SystemWordLength, 48
$TemporaryDirectory, 188
$TimeZone, 30

$UserBaseDirectory, 188
$UserName, 49
$Version, 49
$VersionNumber, 49
$extensionMappings, 189
$formatMappings, 189

Abort, 41
Abs, 59
AbsoluteFileName, 182
AbsoluteThickness, 90
AbsoluteTime, 27
AbsoluteTiming, 27
Accumulate, 133
AiryAi, 252
AiryAiPrime, 253
AiryAiZero, 253
AiryBi, 253
AiryBiPrime, 253
AiryBiZero, 253
Algebraic Manipulation, 218
All, 114
Alphabet, 102
Alternatives, 52
AngerJ, 254
AnglePath, 231
AngleVector, 232
Apart, 218
Append, 205
AppendTo, 205
Apply, 83
ApplyLevel, 83
ArcCos, 232
ArcCosh, 232
ArcCot, 232
ArcCoth, 233
ArcCsc, 233
ArcCsch, 233
ArcSec, 233
ArcSech, 233
ArcSin, 233
ArcSinh, 233
ArcTan, 233
ArcTanh, 234
Arg, 59
Array, 202

410

ArrayDepth, 79
ArrayQ, 79
Arrow, 90
Arrowheads, 92
Association, 201
AssociationQ, 202
Associations, 201
Assuming, 60
AtomQ, 83
Attributes, 74
Automatic, 107
Axes, 107
Axis, 107

B64Decode, 188
B64Encode, 189
BarChart, 164
BaseForm, 32
Basic Arithmetic, 130
Basic statistics, 215
BernsteinBasis, 173
Bessel and Related Functions, 252
BesselI, 254
BesselJ, 254
BesselJZero, 254
BesselK, 254
BesselY, 254
BesselYZero, 255
BezierCurve, 173
BezierFunction, 173
Binarize, 154
BinaryImageQ, 154
BinaryRead, 175
BinarySearch, 84
BinaryWrite, 175
Binomial, 195
BitLength, 237
Black, 138
Blank, 52
BlankNullSequence, 53
BlankSequence, 53
Blend, 136
Blue, 139
Blur, 154
Boole, 60
Bottom, 108
BoxData, 32
BoxMatrix, 154
BrayCurtisDistance, 239
Break, 41
Brown, 139
Byte, 176
ByteArray, 114
ByteCount, 84

C, 231
Calculus, 226
CanberraDistance, 239
Cancel, 218
Cases, 205
Catalan, 224
Catch, 41
Catenate, 211
Ceiling, 237
Center, 33
CentralMoment, 114
Character, 176
Character Codes, 263
CharacterRange, 262
Characters, 262
Characters in Strings, 262
ChartLabels, 108
ChartLegends, 108
ChebyshevT, 259
ChebyshevU, 259
Check, 33
ChessboardDistance, 240
Chop, 124
Circle, 92
ClearAttributes, 75
Close, 176
Closing, 154
ClusteringComponents, 115
CMYKColor, 134
Coefficient, 218
CoefficientArrays, 219
CoefficientList, 219
Collect, 220
Color Directives, 134
Color Operations, 136
ColorCombine, 154
ColorConvert, 136
ColorData, 165
ColorDistance, 134
Colorize, 155
ColorNegate, 137
ColorQuantize, 155
ColorSeparate, 155
Combinatorial Functions, 195
Compile, 69
CompiledFunction, 69
Complement, 211
Complex, 60
Complexes, 226
ComplexInfinity, 224
Composition, 67
CompoundExpression, 42
Condition, 53
ConditionalExpression, 60
Conjugate, 61

411

Constant, 75
ConstantArray, 203
Constructing Lists, 202
ContainsOnly, 115
Continue, 42
ContinuedFraction, 245
CoprimeQ, 197
CopyDirectory, 182
CopyFile, 182
Correlation, 215
Cos, 234
Cosh, 234
CosineDistance, 240
Cot, 234
Coth, 234
Count, 206
Covariance, 215
CreateDirectory, 182
CreateFile, 182
CreateTemporary, 182
Cross, 240
Csc, 234
Csch, 234
CubeRoot, 130
Cuboid, 162
Cyan, 140
Cylinder, 162

D, 226
DamerauLevenshteinDistance, 151
Darker, 137
DataImport, 271
DateDifference, 28
DateList, 28
DateObject, 28
DatePlus, 29
DateString, 29
Default, 71
Degree, 224
Delete, 115
DeleteCases, 206
DeleteDirectory, 182
DeleteDuplicates, 211
DeleteFile, 182
Denominator, 220
DensityPlot, 165
Depth, 84
Derivative, 226
DesignMatrix, 240
Det, 240
DiagonalMatrix, 79
DiamondMatrix, 155
DiceDissimilarity, 195
Differential Equations, 230
DigitCharacter, 267

DigitCount, 237
DigitQ, 262
Dilation, 155
Dimensions, 80
DirectedInfinity, 61
Directory, 183
DirectoryName, 183
DirectoryQ, 183
DirectoryStack, 183
DiscreteLimit, 227
DisjointQ, 116
Disk, 93
DiskMatrix, 155
Dispatch, 53
Divide, 130
Division-Related Functions, 197
Divisors, 246
Do, 42
DominantColors, 137
Dot, 80
Drop, 206
DSolve, 231

E, 224
EasterSunday, 29
EdgeDetect, 155
EdgeForm, 94
EditDistance, 151
Eigensystem, 240
Eigenvalues, 241
Eigenvectors, 241
ElementData, 112
Elements of Lists, 205
EndOfFile, 176
EndOfLine, 268
EndOfString, 268
Environment, 46
Erf, 257
Erfc, 257
Erosion, 156
Error Function and Related Functions, 257
EuclideanDistance, 241
EulerGamma, 224
EvenQ, 198
ExactNumberQ, 61
Except, 54
Exp, 234
Expand, 220
ExpandAll, 221
ExpandDenominator, 221
ExpandFileName, 183
ExpIntegralE, 258
ExpIntegralEi, 258
Exponent, 221

412

Exponential Integral and Special Functions, 258,
261

Exponential, Trigonometric and Hyperbolic Func-
tions, 231

Export, 189
ExportString, 189
Expression, 176
Extract, 206

Factor, 222
Factorial, 62
Factorial2, 62
FactorInteger, 246
FactorTermsList, 222
Failure, 116
Fibonacci, 199
File and Stream Operations, 175
FileBaseName, 183
FileByteCount, 183
FileDate, 183
FileExistsQ, 184
FileExtension, 184
FileFormat, 190
FileHash, 184
FileInformation, 184
FileNameDepth, 185
FileNameJoin, 185
FileNames, 185
FileNameSplit, 185
FileNameTake, 185
FilePrint, 176
Filesystem Operations, 182
FileType, 186
FilledCurve, 94
Filling, 108
FilterRules, 71
Find, 176
FindClusters, 116
FindFile, 186
FindList, 186
FindRoot, 227
First, 206
FirstCase, 207
FirstPosition, 207
FixedPoint, 42
FixedPointList, 42
Flat, 75
Flatten, 84
Floor, 237
Fold, 117
FoldList, 117
FontColor, 95
For, 43
Format, 33
FractionalPart, 246

FreeQ, 85
FresnelC, 257
FresnelS, 257
FromCharacterCode, 263
FromContinuedFraction, 246
FromDigits, 238
Full, 108
FullForm, 33
FullSimplify, 222
Function, 67

Gamma, 259
Gamma and Related Functions, 258
Gather, 211
GatherBy, 212
GaussianFilter, 156
GCD, 198
GegenbauerC, 259
General, 33
Get, 177
GetEnvironment, 46
Glaisher, 225
GoldenRatio, 225
Graphics, 95
Graphics3D, 163
Gray, 140
GrayLevel, 135
Green, 141
Grid, 33

HammingDistance, 152
HankelH1, 255
HankelH2, 255
HarmonicNumber, 199
Hash, 124
Haversine, 235
Head, 85
HermiteH, 260
HexidecimalCharacter, 102
Histogram, 166
HoldAll, 75
HoldAllComplete, 75
HoldFirst, 75
HoldPattern, 54
HoldRest, 76
HTML, 271
HTMLGetString, 271
Hue, 135
HyperlinksImport, 271

I, 62
Identity, 68
IdentityMatrix, 80
If, 43
Im, 62

413

Image, 157
Image[] and image related functions., 154
ImageAdd, 156
ImageAdjust, 156
ImageAspectRatio, 156
ImageChannels, 157
ImageColorSpace, 157
ImageConvolve, 157
ImageData, 157
ImageDimensions, 157
ImageImport, 157
ImageLinksImport, 271
ImageMultiply, 158
ImagePartition, 158
ImageQ, 158
ImageReflect, 158
ImageResize, 159
ImageRotate, 159
ImageSize, 108
ImageSubtract, 159
ImageTake, 159
ImageType, 159
Import, 190
Importing and Exporting, 188
ImportString, 191
In, 193
Indeterminate, 225
InexactNumberQ, 62
Infinity, 225
Infix, 34
Inner, 80
InputForm, 34
InputStream, 177
Insert, 117
Integer, 63
Integer Functions, 236
IntegerDigits, 125, 238
IntegerExponent, 246
IntegerLength, 238
IntegerQ, 63
IntegerReverse, 239
Integers, 228
IntegerString, 239
Integrate, 228
Interrupt, 43
IntersectingQ, 117
Intersection, 212
Inverse, 242
InverseErf, 258
InverseErfc, 258
InverseHaversine, 235

JaccardDissimilarity, 196
JacobiP, 260
Join, 117, 212

Joined, 109

KelvinBei, 255
KelvinBer, 255
KelvinKei, 256
KelvinKer, 256
Key, 117
Keys, 202
Khinchin, 225
Kurtosis, 216

LABColor, 135
LaguerreL, 260
Large, 96
Last, 207
LCHColor, 135
LCM, 198
LeafCount, 118
LeastSquares, 242
Left, 34
LegendreP, 260
LegendreQ, 261
Length, 207
LerchPhi, 261
LetterCharacter, 268
LetterNumber, 102
LetterQ, 262
Level, 118
LevelQ, 118
LightBlue, 141
LightBrown, 142
LightCyan, 142
Lighter, 138
LightGray, 143
LightGreen, 143
LightMagenta, 144
LightOrange, 144
LightPink, 145
LightPurple, 145
LightRed, 146
LightYellow, 146
Limit, 228
Line, 96
Linear algebra, 239
LinearModelFit, 242
LinearSolve, 243
List, 119
Listable, 76
ListLinePlot, 167
ListPlot, 167
ListQ, 119
Locked, 76
Log, 235
Log10, 235
Log2, 235

414

LogisticSigmoid, 236
Longest, 54
Lookup, 202
LowerCaseQ, 263
LUVColor, 135

MachineNumberQ, 63
MachinePrecision, 125
Magenta, 147
MakeBoxes, 34
ManhattanDistance, 243
MantissaExponent, 246
Map, 85
MapAt, 86
MapIndexed, 86
MapThread, 87
MatchingDissimilarity, 196
MatchQ, 54
Mathematical Constants, 224
MathicsVersion, 47
MathMLForm, 34
MatrixExp, 243
MatrixForm, 35
MatrixPower, 243
MatrixQ, 81
MatrixRank, 243
MaxFilter, 160
Maximize, 106
MaxRecursion, 109
Mean, 133
Median, 215
MedianFilter, 160
Medium, 96
MemberQ, 207
MemoryAvailable, 47
MemoryInUse, 47
Mesh, 109
Message, 35
MessageName, 35
MinFilter, 160
MinimalPolynomial, 222
Minimize, 106
Minus, 130
Mod, 198
Most, 208
Multinomial, 196

N, 126
Named Colors, 138
Names, 47
Nearest, 119
Needs, 187
Nest, 43
NestList, 44
NestWhile, 44

NextPrime, 247
NHoldAll, 76
NHoldFirst, 76
NHoldRest, 76
NIntegrate, 127
NonAssociative, 35
None, 119
Norm, 243
Normal, 203
Normalize, 244
NotListQ, 119
NotOptionQ, 71
Now, 29
Null, 87
NullSpace, 244
Number, 177
Number theoretic functions, 245
NumberForm, 35
NumberQ, 63
NumberString, 103
Numerator, 223
NumericQ, 127

O, 229
OddQ, 198
Off, 35
On, 36
OneIdentity, 76
OpenAppend, 177
Opening, 160
OpenRead, 177
OpenWrite, 178
Operate, 87
Operations on Strings, 264
Optional, 54
OptionQ, 72
Options, 72
OptionsPattern, 55
OptionValue, 72
Orange, 147
Order, 87
OrderedQ, 87
Orderless, 77
Orthogonal Polynomials, 259
Out, 194
Outer, 81
OutputForm, 36
OutputStream, 178

PadLeft, 120
PadRight, 120
ParametricPlot, 168
ParentDirectory, 187
Part, 208
Partition, 212

415

PartitionsP, 247
Pattern, 55
PatternsOrderedQ, 87
PatternTest, 55
Pause, 30
Permutations, 203
Pi, 225
Pick, 209
Piecewise, 63
PieChart, 168
Pink, 148
PixelValue, 160
PixelValuePositions, 160
PlaintextImport, 271, 272
Plot, 170
Plot3D, 171
PlotPoints, 110
PlotRange, 110
Plotting Data, 164
Plus, 131
Pochhammer, 259
Point, 96
PointSize, 97
PolarPlot, 172
Polygon, 97
PolynomialQ, 223
Position, 121
PossibleZeroQ, 64
Postfix, 36
Power, 131
PowerExpand, 223
PowerMod, 198
Precedence, 36
Precision, 127
Prefix, 37
Prepend, 209
PrependTo, 209
Prime, 247
PrimePi, 247
PrimePowerQ, 247
PrimeQ, 199
Print, 37
Product, 64
ProductLog, 258
Protect, 77
Protected, 77
PseudoInverse, 244
Purple, 148
Put, 178
PutAppend, 178
PythonForm, 37

QRDecomposition, 244
Quantile, 215
Quartiles, 121

Quiet, 37
Quotient, 199
QuotientRemainder, 199

Random, 248
Random number generation, 248
RandomChoice, 248
RandomComplex, 249
RandomImage, 161
RandomInteger, 249
RandomPrime, 248
RandomReal, 249
RandomSample, 250
Range, 203
RankedMax, 121
RankedMin, 121
Rational, 64
Rationalize, 128
Re, 65
Read, 179
ReadList, 179
ReadProtected, 78
Real, 65
RealDigits, 128
RealNumberQ, 65
Reals, 229
Reap, 203
Rearranging and Restructuring Lists, 211
Record, 180
Rectangle, 98
Recurrence and Sum Functions, 199
Red, 148
RegisterExport, 191
RegisterImport, 191
Regular Expressions, 270
RegularExpression, 270
RegularPolygon, 99
RemoveDiacritics, 103
RemoveLinearSyntax, 189
RenameDirectory, 187
RenameFile, 187
Repeated, 56
RepeatedNull, 56
Replace, 56
ReplaceAll, 57
ReplaceList, 57
ReplacePart, 210
ReplaceRepeated, 57
ResetDirectory, 187
Rest, 210
Return, 44
Reverse, 213
RGBColor, 135
Riffle, 213
Right, 38

416

RogersTanimotoDissimilarity, 196
Root, 229
RotateLeft, 213
RotateRight, 213
Round, 128
Row, 38
RowReduce, 244
RSolve, 51
Rule, 58
RuleDelayed, 58
Run, 48
RussellRaoDissimilarity, 196

Scan, 88
Sec, 236
Sech, 236
SeedRandom, 250
Select, 210
SequenceHold, 78
Series, 229
SeriesData, 229
SessionTime, 30
SetAttributes, 78
SetDirectory, 188
SetFileDate, 188
SetStreamPosition, 180
Share, 48
Sharpen, 161
Show, 99
Sign, 65
Simplify, 223
Sin, 236
SingularValueDecomposition, 245
Sinh, 236
Skewness, 216
Skip, 180
Slot, 68
SlotSequence, 68
Small, 100
SokalSneathDissimilarity, 196
Solve, 229
Sort, 88
SortBy, 88
SourceImport, 271
Sow, 204
Span, 210
SparseArray, 50
Special Moments, 215
Sphere, 164
SphericalHarmonicY, 261
Splines, 173
Split, 121
SplitBy, 122
Sqrt, 132
SquaredEuclideanDistance, 245

StandardDeviation, 216
StandardForm, 38
StartOfLine, 268
StartOfString, 268
StirlingS1, 200
StirlingS2, 200
StreamPosition, 180
Streams, 180
String, 104
String Distances and Similarity Measures, 151
String Patterns, 267
StringCases, 269
StringContainsQ, 103
StringDrop, 264
StringExpression, 269
StringForm, 38
StringFreeQ, 269
StringInsert, 264
StringJoin, 265
StringLength, 265
StringMatchQ, 270
StringPosition, 265
StringQ, 103
StringRepeat, 104
StringReplace, 266
StringReverse, 266
StringRiffle, 266
StringSplit, 266
StringTake, 267
StringToStream, 181
StringTrim, 267
StruveH, 256
StruveL, 256
Subscript, 38
SubsetQ, 122
Subsets, 197
Subsuperscript, 38
Subtract, 132
Sum, 65
Sums, Simple Statistics, 133
Superscript, 38
Switch, 44
Symbol, 89
SymbolName, 88
SymbolQ, 88
SympyForm, 39
Syntax, 39

Table, 204
TableForm, 39
TagsImport, 272
Take, 211
TakeLargest, 122
TakeLargestBy, 122
TakeSmallest, 122

417

TakeSmallestBy, 123
Tally, 214
Tan, 236
Tanh, 236
TeXForm, 39
Text, 100
TextData, 39
TextRecognize, 161
The Main Loop, 192
Thick, 100
Thickness, 100
Thin, 101
Thread, 89
Three-Dimensional Graphics, 161
Threshold, 161
Through, 89
Throw, 45
TicksStyle, 110
TimeConstrained, 30
TimeRemaining, 30
Times, 132
TimeUsed, 30
Timing, 31
Tiny, 101
TitleImport, 271
ToBoxes, 40
ToCharacterCode, 264
ToExpression, 104
ToFileName, 188
Together, 223
ToLowerCase, 263
Top, 111
ToString, 104
Total, 133
ToUpperCase, 263
Tr, 245
Transliterate, 105
Transpose, 81
Tuples, 204

Union, 214
UnitVector, 123
Unprotect, 78
UpperCaseQ, 263
URLFetch, 192
URLSave, 188

Values, 202
Variables, 224
Variance, 216
VectorAngle, 245
VectorQ, 82
Verbatim, 58

WeberE, 256

Which, 45
While, 45
White, 149
Whitespace, 105
WhitespaceCharacter, 270
Word, 181
WordBoundary, 270
WordCharacter, 270
WordCloud, 161
Write, 181
WriteString, 181

XML, 272
XMLGetString, 272
XMLObjectImport, 271, 272
XYZColor, 136

Yellow, 149
YuleDissimilarity, 197

Zeta, 261

418

	Manual
	Introduction
	Language Tutorials
	Examples
	Django-based Web Interface

	Reference of Built-in Symbols
	Date and Time
	Input and Output
	Procedural Programming
	Global System Information
	SparseArray Functions
	Solving Recurrence Equations
	Rules and Patterns
	Mathematical Functions
	Functional Programming
	Code Compilation
	Options and Default Arguments
	Attributes of Definitions
	Tensors
	Structural Operations
	Drawing Graphics
	Strings and Characters - Miscellaneous
	Mathematical Optimization
	Drawing Options and Option Values
	Physical and Chemical data
	List Functions - Miscellaneous
	Numeric Evaluation and Precision
	Arithmetic Functions
	Colors
	Distance and Similarity Measures
	Graphics, Drawing, and Images
	Input/Output, Files, and Filesystem
	Integer Functions
	List Functions
	Statistics, Moments, and Generating Functions
	Integer and Number-Theoretical Functions
	Special Functions
	Strings and Characters
	File Formats

	License
	GNU General Public License
	Included software and data
	Index

